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CHAPTER 1 :
z:: ) INTRODUCTION TO QUEUEING THEORY . ':
W N
o g
2 1.1 Introduction W
»H N
o A queue is a waiting line of customers at a service ceanter. ;
5 -
::' Depending on the service center, service is provided by either a single %
0 "
) »
::: server or multiple servers which operate in parallel. Figure 1.1 N
K depicts a typical service center, Customers arrive at the service 3
()
&
.f:. center, wait in line for a server to become free, receive service, and $
N '
;.’ depart. For a service center to be stable, the mean demand for service
R
w cannot be greater than the capacity that can be provided. v .
»
B -_ ’:-
; However, spurious arrivals and statistical fluctuations in service ;.:
vy
1™ (,
:" requirements can temporally cause demand to exceed the capacity. When <
> this occurs, a queune of waiting ocustomers will form,
. "3
)
- =
i ! '
o | SERVERS : :
' () | o
- l O | :\.
> ' — l .
’ | |
3 ARRIVING e~ o [ _._< eese DEPARTING
CUSTOMERS I _'_L'__ I CUSTOMERS _
P ' QUEUE ! =
v | |
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:'.. Figure 1.1 A Typical Service Center, T
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The purpose of a queuneing model is to predict the performance of a
physical ofsto- in which there is contention for resources. The
resources lt; represented in the model by the sezvers. Aay realistic
queneing model must incorporate statistical parameters. For example, it
is usually not possible to predict with certsinty when the next
oustomer will azrive or what his exsot service time will be. However,
it is often possible to assign probadbilities to possible values or
continuvous intervals of possible values, That is, these parameters are
usually random variables that cam best bs characterized by probability

distribution fumctions., Since the parameters that descoribe a queueing

model are random variables, the performance parameters are also randoa

variables. Thus, queneing models are used to answer probabilistic.
questions such as: what is the probability that a service center will

have k customers at time t, or what is the probability that the waiting
time of an arbitrary customer is less than some fixed value x?

Probably the best way to illustrate a queueing model and
demonstrate its purpose is by example. Figure 1.2 is a model of a small
batch computer system. The labels on the arcs are routing
probabilities., It is assumed that the critical resources are the
centrel processing vait (CPU), a hard disk, and a floppy disk. These
are represented in the model by single server service centers, A
customer or job arrives from outside the system and waits in a queue at
the CPU for service, After receiving some service at the CPU, the job
requires a hard or floppy disk operation before it can proceed (the

probability that it needs the bard disk is 0.8, and the prodbadbility it
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Figure 1.2 Example of an Open Queuneing Network Model.
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A
alals s

needs the floppy disk is 0.2). Since these operations are usually slow

compared to those at the CPU, the CPU releases the job and starts to

AR
work on another one, The released job proceeds to the ;ueue at the )"_‘
sppropriate disk and waits for service. After receiving disk service *: 3
the job either exits the system or return to the queve at the CPU for = “
more service (the probability it exits the system is 0.1, and the ;\‘{';‘
probability it returms to the CPU is 0.9). :ii;éi'

In order to analyze such a model the arrival process, the routing o
probabilities, the service demand, and the order in which jobs are
sorved must be described., Some of the performance parameters that can
be obtained from the model are : the mean waiting time, the mean
response, the mean throughput, the mean number of jobs at each service

center, and the ntilizations at each service center,
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The model is Figure 1.2 is classified as an opea queuneing network
model, The word network refers to the fact that there is more than one
service eont;r in the model. The word open is in reference to the
arrival process, In an open queueing model customers arrive from
outside of the system and leave the system once their service demand
has been met.

Figure 1.3 depicts a closed queueing network model of an

interactive computer system, The structure of the model is the same as

TE:MG'N%LS CPU l
i .
O,

. I

FLOPPY

Figure 1.3 Exzample of Closed Queueing Network MNodel.

the one in Figure 1.2 with the exception of how customers enter the
system., In this model there are s finite number of terminals, K, and it
is assumed that there is alvays one customer at each terminal, Thus,
once a customer’s service demand is met, he is immediately replaced by

a new customer. Clearly, the system is equivalent to ome in which




AavL "o g
s.f‘of:“:?'..l. ‘:-'

T NIV N R WL U U TUC R LR Ul

customers can neither enter or leave the system, and hence the name
closed, In.nddltion. the systom is self regulating inm that 1is
impossible fc;r the moan service demand to exceed the capacity. If s
new customer tries to enter the system when it contains K customers, he
is simple turned away. Although the structure of this model is similar
to the one in Figure 1.2 the service demand and routing probabilities
are usually quite different, In addition, the parameter that one
usually varies in an open network is the arrival rate, whereas in a
closed network it is K,

The focus of this text is queveing network theory, however before
one can analyze a network of service ceanters, he must first learn how
to analyze single service ceaters. The rest of the chapter and several

more are devoted to this,

1.2 Steady-State and Equilibzium .

Since a queueing model of & physical system is a probability
model, the number of customers in a service center at time t is a
discrete random varisble, Let N(t) denote this random variable and let
Py(t) = P[N(t)=k]. That is, Py(t) is the probability of fimding k
customers in the system at time t. Pk(t) depends not only on the value
of t, but also on the number of customers in the center at t=0, For
small values of t, the number of customers in the service center will
be largely influenced by the number of initial ocustomers, However, as t
becomes larger the influence will become less, and after a sufficient
period of time the number of customers in the service center will

become effectively independent of the initial number of customers, The
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situation is very similar to those found iz electrical circuits that
contain inductors and/or capscitors, and the same terminmology is used.
The time dependent solution of Pk(t) is called the tramsient solution,
and the time independent solution the steady—state solutionm,

The steady-state solution is denoted Pk and defined to be
Pk = %&P.Pk(t) . (1.1)

Pk is the long-term probability of finding exactly k customers ia the
service center, It is important to understand that whereas Py is no
longer an explicit fumotion of t, the number of customers ia a service
center will cextaianly change with time. That is Py equals the loag-term -
proportion of time that the service cemter coamtaims exactly &k
customers, Py is also often referred to as the equilidbrium solution
becanse ultimately the flow of customers into a service center must
equal the flow of oustomers out of the service center.

Queuneing theory focuses primarily on the steady-state solution,
This is not only because of the difficulties in obtaining tramsient
solutions, but also because the extra information contained in them is

of little use.

1.3 Specification of Queveins Svstems

As previously mentioned, before a service ceamter can be analyzed

it is first necessary to specify the stochastio processes that describe

the arriving customers, and the structure and discipline of the service

conter, Generally the arrival process is described in terms of the
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O GRS
.




TR TR b 4. R P pt o p Wy a8, 8" g 0°3 @', §%, O - Ca BT, £ AV, £, 4% 4t U . g% i gt LAy P

T
S
probability distribution of the imterarrival times (that is the times "'::,Ei
between successive arrivals of customers at the service center), The , -
assumptioas l;.d in most of queuneing theory are that these interarrival ::ii
times are both independent and identically distributed raadom :::,’EEE
vaziables. Henmoce, they all have the same probability distribution -
function (PDF) which describes the arrival process. The arrival process ;SE:
is denoted by A(t) and is by definition: é'?"'
A(t) = P[time betveen arrivals  tl. (1,2) :_;
In order to satisfy the assumptions of independent and identically E.:.:'_,,
distributed random variables, it may be necessary to partition the :.f
arrival stream into classes of customers and define a PDF for each S
- NN
class, \1\
The second statistical quantity that must be described is the '_,’E:C
service time. It is usually assumed that the service times are "i\m‘
independent random variasbles all having the same PDF. The service time E: ,:::',
PDF is denoted by B(tr) and defined to de: E:': A
B(t) = P(service time  <l. (1.3) o
Again it may be mecessary to partition the customers into classes and ';E'}::
define a service time distribution for each olass, S’.'
One must specify a variety of additional quantities in order to i
identify the structure and discipline of the service center. The first :'F"g:‘:
of these is the number of parallel servers at the service center, ":.:‘:':g
Another is the available storage capacity to hold additional 'k

customers, Often this quantity is assumed to be infinite, Still snother

specification is the customer population. That is the maximum number of

. EE LT M A N L " L o
~ S SN N \_::_,\ ~ \_.\*:

AL NN



customers that caa simultameounsly require service, Againm this quantity

is often assumed to be infinity., In addition to these it may be

MaaY

il

necessary to specify the service disoipline or order ia which customers %:
.i

are served. Typical service disciplines are first-come first-served 0?;::‘&

(RCFS), last-come first-served (LCFS), proocessor sharimg (round-robin),

aad priorxity.

]
R
1.4 Shorthend Notstion for Queveins Svstems fudn
The shorthand notation A/B/m/K/N is commonly used to describe a ?‘.
queneing system comsisting of s single servioce ceater. Here A describes :::
the interarrival time distribution, B the service time distribution, = g~
the number of parallel servers, K the system’s storage capacity, sad N - E;.
the customer populstion, If any of the descriptors are abseat, them it :
is assumed that they take the value of iafisity. Thus, if it is assumed .‘g
that the storage capacity and ocustomer popsulation are isfimite, only :'j-g
the first threeo descriptors are required. The followving is a list of :: ,.:'
well-accepted symbols for distributions: '::
:_,,s_.
M Exponential distribution (i.e., Markovian) :E':'.:-f
D Deterministic variable, a coastaat j;"_
Bk k-stage Erlangiasn distridution ;i':;
By k-stage hyperexpomential distridbution %“
G General distribution, : :E
For example, the notation M/D/1 implies a single server system with (;’:
i exponential arrivals and a constant (deterministic) service time. :‘:::)2
, .
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1.5 Little’s Lav

Ptolnblyhtho simplest, yet the most important formuls, in queueing

theory is Little’s law [LITT61]. It states that the mean response time
R, is equal to the mean queue length L, divided by the mean arrival
rate A, That is,

L

R= i (1.4)

To show that Little’s law is valid, consider Figure 1.4 which is a

plot of the number of customers in a service center versus time,

Timnw -

Figure 1.4 Plot of Customers versus Time in s Typical Service Center.

Let
N(t) = the number of customers in the system at time t,
a(t) = the number of customers that arrive in the interval [0,<],

t(t) = the ares under the curve in interval [0,x].
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During the interval [0,v] the mean arrival rate is

A=), (1.5)

L 4

and the mean number of customers in the system is

A 1
L-lj'u(t) at = &) . (1.6)
< 0 1

The area under the curve during this intervel equals the total number
of customer—seconds spent in the system by the a(tr) customers. If the
number of customers in the system at t equals the the number of initial

customers, then the mean time spent in the system per customer is

() |
R a(z)

(1.7)

- E(e) = - (<) -
t a(x) alc)

L
Y R. (1.8)

The stipulation that the interval be chosen such that the number
of initial and final customers in the system be equal, is nothing more
than the steady-state or equilibrium condition. That is, over the long-
run the number of customers that flow into a system must equal the
number of customers that flow out of the system. This implies that the
throughput equals the arrival rate, Thus Little’s law can be also be

expressed as
R.;. (1.9)

where T represemts the throughput. There are no standard notations in

10
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queuneing theory, hence different authors use different symbols to
represent tho_qu.ntitios in Little’s law, Although the same symbols
often appesar in usage by different authors, they are used to symbolize
different quanties. In order to avoid confusion, the second expression
will almost always be used in this text since the letters have
intuitive meaning,

It is important to emphasize that Little’s law does not depend on
any specific assumptions regarding the arrival or service time
distributions, nor does it depend on the number of servers or the order

in which customers are served., It holds for any systeam in which

customers arrive, wait for service, and depart., It does not matter if

the system is composed of a single service center or s collection of
service centers, In fact Little’s law can even be applied to parts of a
service center, For example, if Lq is the number of customers waiting

to be served and 'q the mean waiting time, then Lq = l'q.

1.6 Dtilization

The utilization of a service center is the average asmount of
service required divided by the maximum amount of service that canm be
provided, If the arrival and service processes are independent of each
other and of the number of customers in the system, then on the average
A customers arrive per second, and esch customer requires E[S] seconds
of service. Thus the average amount of service required per second is
AE[S]. Now for a single—server system, the maximum amounant of service
that can be provided is one second of service per second, Hence, the

utilization (demoted by p) of & single—server system is
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p = AE[S] . (1.10)
For a service.center with m servers the maximum amount of service that
can be provided is m seconds of service per second. Therefore, the

utilization for s multi-server system is

p = MELS] (1.11) AT

a S

Clearly, for a single-server system, the utilizatioan is the AT

-
4

proportion of time the server is busy, Similarly, for a multi-server

ax v
A2
ll.Al.’.l..l‘

system, utilization is the average proportion of time the servers are

’I’“

'~
AY
[ o)

busy., Since Py is the long-rua proportion of time the system contains k

o

customers, Po is the long-run proportion of the time that the system is .
empty or not busy. Now since the summation of the Pifs over all k must
equal one, the proportiom of time that the system is busy is l-Po. Thus
for a single—server system utilization can be expressed as

p=1-P, . (1.12)
Similar results can be obtained for a multi-server service center, More

precisely,

o §
p=1-Po-k ) (=) By . (1.13)
k=1

This follows from the fact that when the service center contains k
customers (m-k)/m is the capscity of the service center that is not

utilized, The last two equation for p are more general than the first

two, im that the arrival rate does not appear explicitly and,

s

v o
therefore, it may be a function of the number of customers in the AL
I‘,
.
5
system, Fﬁ
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Obviously, the utilization of a service center must be less than
one. That is, for the system to be stable, the mean service demand
cannot exceed the capacity of the system to provide service., If the
system is not stable, then as t approaches infinity, the queue length

grows without bound and the limiting probabilities do not exist,

1.7 Qutline of Contents

The purpose of this short chapter was to introduce queueing theory
and some of the terminology thst will be used in the following
chapters. The next chapter is a mathematical treatment of Markov
processes, The tools developed im this chapter form the basis of
queueing theory analysis. Chapter 3 is the analysis of Markovian
quenes, M/M/m, Chapter 4 is the analysis of semi-Markovian queunes,
M/G/1 and G/N/1, Chapter 5 is anm introduction to queuveing network
theory (Jackson type mnetworks). Chapter 6 is advanced queueing network
theory. Chapter 7 is computation algorithms for closed and mixed

networks. Finally, Chapter 8 points out the limitations of queuneing

theory and open areas of research.
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CHAPTER 2

MARKOV PROCESSES

2,1 Random Variasbles

A random variasble, X, is a variable whose value depends on the
outcome of a random experiment, The outcome of the experiment assigns a
value to X. The set of all possible outcomes of an experiment is known
as the sample space of the experiment and is denoted by S. Each outcome
‘s’ in the set S is referred to as a sample point., Thus a random
variable is nothing more than a function defined on the sample space of
s random experiment, Therefore, the symbol for a randoam variable should
be (X(s):ssS), demoting the dependence of X on the sample space, bdut it

is customary to use the short hand notationm X,

2.2 Stochastic Processes

A stochastic process, {X(t,s):teT,seS} is &« family of random
variables that describes the evolution through time of some process.
The symbol, {X(t,s):teT,ss8}, indicates that it is a set-function of
two variables, The set T represents time, and is often referred to as
the index set since for each tsT (a specific valme of t), X(t,s)
reduces to a random variable (note that in this chapter and only in
this chapter, the variable T will represent time and not throughput),
Thus, the variable t induces a set or family of random variables, The
sot S ropresents the sample space of these random variables, and s is a

sample point in S, Just as it is customary to use the symbol X for a
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random variable rather than {X(s):seS}, it is also customary to drop
the s in the notation of a stochastic process, That is, the traditional
symbol for a stochastic process is (X(t):teT} [PARZ62], [THOM6S],
[ROSS80].

There are two other notations that are used to denote special
stochastic processes. If the set T is finite or countable, then the
process is said to bo a discrete—time stochastic process, A countable
set is one in which there exists a one~to-one correspondence between
each element of the set and the nonnegative integers. Therefore, a

discrete—time stochastioc process is s sequence of random variables

indexed by the set T, When the sequence is infinite but countable, the _

process is often represented by {xn.n-o.1.z.".). If on the other hand,

the set T consists of all points on a continuous interval of the time
axis, the process is called a continuous—time stochastic process. If
the interval consists of the entire positive time axis, then frequently
the short hand notation X(t) is used to represent the process,

Stochastic processes are also classified sccording to the set S.
The set S is called the state space, and it consists of all possible
values (states) that the random variables may assume., If S is finite or
countable, the process is said to be a discrete-state process.
Otherwise it is said to be a continuous—-state process,

It I,=i, then the process is said to be in state i at time n, or
for the continuous—time case if X(t)=1i the process is in state i at

time t,

R
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A Markov process is & stochastic process that has no 'memory’.
This means that information about how the process reached a certain
state plays no roll in assigning probsbilities to the next or future

states, Only discrete-state Markov processes will be discussed ia this

text.,

Adiscrete-state, discrete—-time, Markov process is a stochastic

process {xn,n-o.1,z.".) such that:
P[Xn+1-j |Xn-i.xn_1'in_1...-.xl' 11,X°-i°] - P[x‘+1-j 'xn-in] (2.1)

for all states 10.11."..in-1.1.j. and all 2)0., In other words, the
probability of any future state xn+1, given present state X and the
past states xn_l..“,xl.xo. depends only on the present state and is
independent of the past states, Discrete—time Markov processes are
often referred to as Markov chains,

If the probabilities are time-invariant, that is independent of n,
then the process is referred to as a homogeneous Markov process, For a
homogensous Markov process, let Pij denote the probability of going

from state i to j in one step. That is,
Pyj = PIX  q=ilx =i] . (2.2)

The probability of going from any state to another state in one step

can be described by the matrix

-
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;oo Por Po2 .. :Oj cee
10 Pig Py .. Pyy .,
[P] - ° . . .

Pio Pia Pia ... Py ...

. . . . (2.3)

where the rowv index is the present state and the column index the next
state. The matrix [P] is called the one-step transition matrizx,

Let Pijz denote the probability that a process goes from state i
to state j in two steps. In order to go from state i to state j in two
steps, the process must go to some intermediate state k in the first

step and proceed to state j in the next step. Therefore,

Pijz - } Pix Py
k=0

= Pip POj + Py Plj + Py sz + 00, (2.4)
This equation can be interpreted as the weighted average of going to
state j in one step, given the process was in state k, weighted by the
probability of being in state k, The two-step tranmsition matrix,
denoted by [le, can be found from the ome—step matrix [P] by observing
that the two—-step transition Pijz is the sum of the elements along the
ith rov multiplied by the elements along the jth column, Hence, the
two-step transition matrix is
[P2] = [P][P] = (P12 . (2.5)
It follows that for a process to go from state i to j in n+m
steps, it must go to some intermediate state k inn steps and proceed

to state ; in m steps. Therefore,
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The last equation is called the Chapman-Kolmogorov equation, When n=1,
the equation is referred to as the backward Chapman-Kolmogorov
equation, since it is writtem at the backvards most end of the

interval, More precisely, the backwvard Chapman-Kolmogorov equation is
1 [_J
+n
Py o= 2 Pix Pyy"
k=0

- B n n see

Note that Pijl" is the sum of the elements, along the ith row of the
one-step transition matrix, multiplied by the elements along the jth
column of the m—step matrix., Hence,
(P1*®) = [P} [P™) . (2.8)
If m oquals two, then the three—step transition matrix is just the
one-step matrix times the two—step matrix, which is the one-step matrix
raised to the third power. Recursively it follows that the nth-step
matrix is just the ome-step matrix raised to the nth power. That is,
(p%] = [PI® . (2.9)

The same results can be derived by letting m=1, More precisely,
-
-+
P;;°*1 - } Pix" Py
k=0

- a a a oes

or in matrix form
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(p2*1) = [(P") (P . (2.11) AT
When m=1 the -Chapman-Kolmogorov equation is referred to as the forward 5.:;
’
Chapmam-Kolmogorov equation, since it is writtean at the forward most : :u
W
end of the interval, ol
The unconditional probability of being in state j after n steps, o
N
denoted by Pj‘. is the weighted average of going to state j in n steps, ',;::.:
i
given the initial state was k, weighted by the probability of state k f-: !
being the imitial state, Therefore, .::::
/ )

4

‘?;-

o

Pjn - 2 Pko ijn
=0
=P Py + PO Ry R e RO PR e (2.12) SN

where Pko is the probability of initially being in state k, Let Vo ‘:{:\,
equal the vector of initial state probabilities, and let Y2 equal the ’
"'-
vector of state probabilities after n-steps. The unconditional ;"'
‘.
I d
¢

probabilities in vector form are

(A4

y -

ve = V0 (P (2.13) &

where VO = [Poo,Plo.on,"'] and V® = [Pon,Pln,Pzn,'"] . Thus, given o
{
o™y
an initial state probability vector and the one-step transition matrizx, "'o".
one can find the n-step probability vector, that is, the probabilities Xl

of where the process will be n steps after start-up.

2.4.1 Limiting Probabilities IO
)
o

When a process first starts up, its initial state certainly has a .-P"

large influence on the current state, but what about after the process . :::',
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has been operating for a long time? It seoems reasomable to expect that

as time incroeases the influence of the initial state should decrease.

More specifically, does the limit of Pj' as n approaches infinity,

converge to some value, say Pj. which is independent of the initial

state, and do the Pj's fora s probability system? The answers to these

questions are that it depends om the process.

In order to define vhen the limiting probabilities exist, it is

first necessary to discuss some terminology of Markov chains., A MNarkov 5;
iy

chain is said to be irreducible if every state can be reached from :ﬁ;
* A
iy

every other state. Nore precisely, for each pair of states (i and j)

o

there must exist an integer m ( which may depend upon i and j ) such

that P“' > 0. Furthermore, state i is said to have period n if, when

in state i, the omly possible steps at which the process can return to

state i are n,2n,30,...,. If n = 1 then state i is .periodic. It can be

shown that all states of an irreducible Markov chain have the same

period [ROSS80].

The following theorem states when the limiting probabilities

oxist: (1) In an irreducible, aperiodic, homogeneous, Markov chain the

limiting probabilities

Pj = 1lim Pj" = lim Pu" (2.14)

o= ®© - o

always exist and are independent of the initial state probabilities,

[ AR .
x !. l. e
N

(2) If the chain is finite, then the limiting probabilities form a

4

probability system. That is,

Py
AR

h 3o Jo]

o
2

b

0Py and } Py =1 for all 4. (2.15)

e
K-
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(3) If the chain is infinite, the limiting probabilities may or may not
form a ptobibility system, but if they do not then Pj = 0 for all j.
The 1ntorostod reader is referred to [FELL66] for a proof,

Assuming that the limiting probabilities do exist, it is easy to
show that they are independent of the initial state. The unconditional

probability that the process is in state j at step o can be expressed

as
Py" = ) BTl By L (2.16)
k=0
or in vector form
v = v21 gp] | (2.17)

By taking the limit of these equations as n approaches infinity, one -

arrives at
[ 4
Py = 2 Py Py (2.18)
x=0

or in vector form
V=V [P] (2.19)

where V = [P,,P;,P,,*"] . Therefore, the limiting probabilities are
independent of the initial state of the process. Equation (2.,18) or
(2.19) along with the comservation of probability equation (summation
of Pj's equal one) uniguely determines the limiting probabilities when
they exist,

It can also be shown that when the limiting probabilities exist

then
Py = lim Py % . (2.20)

= ®

The egquivalent statement in matrix form is that as n approaches

infinity the n-step transition matrix approsches a matrix in which each

21
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rov approaches the vector V., That is,

lim [P®] = (V] . (2.21)
- ®

The limit of Equation (2.13) as n approaches infinity is

v=v0 1ia [P?] . (2.22)
N~

The initial state vector, Vo. appears explicitly in this equation, and
since it is always true that the elements in v0 form a probability

systom, then the only way that the equation can hold and be independent

of V0 is if

ii'- (P2] = [VI]. (2.23)

The limiting probabilities are also called the steady-state
probabilities, since they represent the states of the process after the
effects of the initial corditions have died ont, It is important to
understand that as n spproaches infinity the process still moves from
state to state, and hence the limiting probabilities equal the long-run

proportion of time the process spends in each state,

2.5 - ontin - ) | Pgoce )
A discrete-state, continuous-time Markov process is a stochastic
proocess (X(t),t20]} such that for all s,t)0 and nonmegative integers

i,J,x(u),0<u(s
P[X(t+s)=j|X(s)=1,X(u)=x(u),0<ucs] = P[X(t+s)=j|X(s)=i] . (2.24)

That is, the probability of the fuoture X(t+s)=j given the present X(s)

and past X(u),0{uls, depends oanly on the present and is independent of

22
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the past. If in addition,

PIX(t+s)=j|X(s)=1] (2.25)
is independent of s, then the process is said to be stationary or
homogeneous. Only homogeneous Markov processes will be considered inm
this text.

Since the past history includes how lomg the process has been in
current state, the definition requires that the amount of time in the
current state and the next state visited must be independent random
variables. The definition also requires that if Ti is the random
variable representing the amouat of time in state i, them the
probability distribution function (PDF) of Ti must be ‘memoryless’. In _
other words, the amount of time in state i camnot affect the
probability of when the the process will depart state i, The memoryless
statement in mathematical terms is

PIT>t+s]Ty>s] = P[T >t] . (2.26)

The only PDF which has this property is the negative expomential,

P (t) = PIT;Ct] = 1-6 °1° (2.27)
where 1/{1 is the expected value of Ti' The subscripts indicate that T1
may depend on the state i.

The following shows that this distribution function has the

memoryless property. The condition in Equation (2.26) is equivalent to

PIT;>t+s|T;>s] P[T,>s] = P[T;>t] P[T,;>s] (2.28)
or
PIT;>t+s] = P[T;>t] P[T;>s] . (2.29)
l
[
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Since

e-gi(tﬂ) = o-ht o-h. » (2.30)

it follows that the negative exponential satisfies the condition in

s o

: Equation (2.29), and therefore has the memoryless property. W
' The following proves that it is the only distribution function )
¥ -~
B ;o
N with the memoryless property. The derivative of Equation (2.29) with :_‘:'
..-‘_‘
, respect to s is f
‘ dP[T,;>t+s dP[T,>s P
. _[1_.] = P[T;>t] _[_i__]_ . (2.31) 5‘*-
X ds ds o
' >
L) \-F
v For any PDF > '
=-f,(s) , (2.32) —
ds ds - Yy
; -
X iy
where fi(l) is the probability density function (pdf). Substituting pASY
-LN 43
(2.32) into (2.31) yields Xl
0 V:' g
dP[Ti>t+.] :"..:
. —_— = —f,(s) P[Ti)t] . (2.33) ol
ds N
I’ '
[}
! By dividing both sides of this equation by P[Ti)t] and letting s=0, one @3
p obtains N, '
dP[T;>t] s
— = -£.(0) ds . (2.34) :;:_\
! PIT >t) X
! It follows by integrating from 0 to t that
.
1 SOM
- Log, PITOt] = —£,(0)¢t , (2.35) )
~|
-£4(0)¢t E"
: prrel = o 1000, (2.36) &
-£5(0)¢ o
p[TiSt] = 1- @ . (2.37) ":.:'
Thus, the negative exponential is the only PDF with the ‘memoryless’ .r’
'-\-
. lh:“f
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This connection is s$0 stromg that the definition of a homogeneous
i G
continuous-time Markov process can be given in terms of it. Namely, it N '\j.:
is a stochastic process having the properties that each time it enters :'i.::o
AOON
J'Al‘.
state 1 :
EAEN
(1) the amount of time it spends in state i is expomentially fj:-:'.:_
S
distributed with mean 1/3,, and -::-(-"3
D
» ?_ A
(2) when the process departs state i, it enters state j sccording O
LR
3 ,
to probability Pyj- Of course, the Pyj must satisfy :‘;;7:
ey
£
pi! = 0 for all i :\.5’.'
Ypig=1 foralli. (2.38) - T
| aele
PSS
AN
For a homogeneous, continuous-time Markov process, let P, (t) jsf.:
denote the probability of going from state i to state j in time t. More ./Q.}
- * y
A
precisely, .:::'4_:__
Pij(t) = P[X(t+s)=j|X(s)=i] for s,t > 0 . (2.39) :x‘\‘_*:
\
FoN
P“(t) is analogous to the discrete—time n-step transition probadbility Y
NN
Pijn. The difference is that the discrete parameter n has been replaced ;::",:_,
N
'."..':\- :
by the continuous parameter t. In other words, Pijn is the probability :"‘,\_-,.
RYt
of going from state i to state j in n-steps, and P“(t) is the :
probability of going from state i to state j in time t. 4‘::47-:';
.'-.:-,ﬁ
Since by definition P“(t) is independent of s, then P”(t) is :}}j-l:
« -‘..ui
also the conditional probability that the process is in state j at time -~
t, given that it was initially in state i at time 0. That is, l::':f-'.:"
SN
P,,(t) = P[X(t)=j]X(0)=1] . (2.40) N
J AN
oA o
‘,\Ac
o ™
W
2 R
-
R
-
NN




Let Pj(t) denote the umconditional probability that the process is in 7
state j at time t. More precisely,
Pj(t) =) PIX(t)=jIX(0)=1] PIX(0)=1] .  (2.41)
i=0
It follows that
Pj(t) = } Pu(t) P;(0)
i=0
= Po(o)Poj(t) + P1(0)P1j(t) + Pz(o)sz(t) + 0, (2.42)
)
As in the case of the discrete—time Markov process, these probabilities
can be expressed in vector and matrix form, That is, - ::-‘.":
K
V(t) = V(0) [P(t)] o
l*\d:
where V(t) = [Py(t),P(t),Py(t), "], e
and V(o) = [Po(O).Pl(O).Pz(O)."‘l.
i and
Poo(t) Puq(t) Py,(t) Py, (t)
oo *ee e o oe
Pio(t) P3p(t) Py5(t) Pyy(e)
[P(t)] = . . ) :
Pio(t) Py(t) Pio(t) e P“(t)
. ) ) . . (2.49)

Hence given V(0) and [P(t)], the unconditional probabilities of where
the process is at time t, V(t), can be computed. The only remaining
} problem is determining ([P(t)].

In the discrete-time Markov chain P”n was derived from the

26
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Chapmam—Kolmogorov equation,
[}
Py = ) Pyt Byt (2.6)
k=0

and s similar procedure will be used here. In order for a continuous—
time Markov process to make a transition from state i to state j in
time h+t, it must go to some state k in time h and then proceed to

state j in the remaining time t, Therefore,

Pyj(htt) = 2 Pix(h) Pyy(t) ° (2.44)
k=0

This equation is the continuous—time equivalent of the Chapmam- .

Kolmogorov equation, By writing out the k=i term, subtracting Pij(t)
from both sides, dividing by h and taking the iimit as h approaches

zexr0, one arrives at

- Pij(t)] - s [Pii(h)Pij(t) " Pig(8) L § Pip(®) ij(t)]
h k=0 h
K#i

h

. (2.45)
The left hand side is the derivative of Pij(t) with respect to time,

With the assumption that the limit and summation can be interchanged

one has,
dP, , (t) P,,(h)-1 S P, (h)
13(8) = 13 [ 11 ] Pyy(t) + ) 14 [ ik ] Py (t) . (2.46)
at 3 h 1:20"l y b
' k¢i
Now let
P,,(h)-1
- g [l G.am
h
27
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and

4k * h-0

P, (B)
is [ ik ] for k#i. (2.48)

Substituting (2.47) and (2.48) into (2.46) gives

150 = q43 Pig(e) + Y aup Pyy(e) . (2.49)
dt k=0
x#i

This equation is known as the Chapman-Kolmogorov backwards differential
equation,
Equations (2.47) and (2.48) have the following interpretations:
For small values of h the probability that the process makes a
transition out of state i is approximately 1+q11h. More precisely,
Pij(h) =1 + q43b + o(b) . (2.50)
The notation o(h) represents any function that goes to zero faster than

h. That is,

lim 21§1 =0 . (2.51)

It should be obvious that q;; wmust be negative, In fact qii’-gi‘ To
show this, recall that the time spent in state i is expomentially

distributed with mean 1/{1. Hoence for small values of h

_clh
Pii(h) = P[Ti)h] = 0

&m? ogm?

- 1 - h + - + se e
S 21 31!
=1 - %,;b+ o(h), (2.52)
and
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g
0 w2 @ N
\'v h = - + *° . .
o o(h) 21 3 (2.53) .
oy
i
3
::; The interpretation is that when the process is in state i, it departs
§
¥
::' at mean rate -q ;.
W Similarly for small values of h the probability that the process
.!
\)
::, makes s transition to state k, given that it is ourreatly in state i,
by,
1
_‘_::' can be approximated by 9y h. More precisely,
WY
) Pik(h) = qik h + O(h) . (2.54) _"“j
z_ The interpretation is that when the process is in state i, the rate of :
{ flow to state k is q;;. For small values of h, P,;,(h) is the _ }._’
195 o
5 X
2 probability that there is a transition from state i, and the transition 5\_4
'n\ -‘\i
) is to state k, Since these two events are independent f-__:
_C h
> Pjp(h) = PIT;Chl pyy = (1 -0 °1) pyy
b
) &m?  gm?3
b, = (1 - (1 - b + 31 - 31 + )) Pix
.‘C
a = (3;h + o(h)) pyy
where Pjy is the probability the transition is from i to k, and again
4
’A
vy o(h) picks up all terms with powers of h, Hence,
v,
I,
Uy = "i Pig - (2.56)
&)
: Since {i is the conditional rate of flow from state i, then {1 Pjp must
‘l
: be the conditional rate of flow from i to j. It follows that
A
)
N 29
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(2.57) g

As in the discrete case, there is also a forward Chapman-

[ J -
qu'}tux ,» and }qu-o.
) k=0 k=0
ki

s,

Kolmogorov equation. The forward differential equation is derived by ‘_,_i
N
interchanging t and h in Equation (2.44), writimg out the k=j tera and a
RS
following the procedure for backwards differential equation, The ;:

results is

[
. -
: TR E TIPS SN

dt k=0

kéj
! where . I _
! -1
9%y = 3 [ k: ] for j¥k, and 933 % 2 [—3!3;--] .

Both the backwards (2.49) and forward (2.58) equations define a
sot of differential equations which can be put into vo';tor form by

defining [Q] as

(e} = iy [[P(t)]'[I]] . (2.59)
B

where [I] is the identity matrix., The matrix [Q] is called the rate

matrix, The resulting backwvard matrix equation is

4PB] . [p(e)) (a] , (2.60) %

‘ dt S
; Lo
X and the resulting forward mstrix equation is :Cn}_.-
o \J\
4P o fa) [P(0)] . (2.61) e

dt AR

e

Since both equations describe the same process, they both have the same .-:.-

i )
~e

solutions. The initial conditions for the equatioms are 0

! 30

N o N %t N MR e et e T e e LT T T T S Y
T N I P N A A s G AP AP JATLIR IR AL
) ,C.nl. v-- v-‘y - - --,, ..,'.._._._ _-.,. e ate




.
Pyyt0) = {: e ::j g

(2,62) -
or in matrix form [P(0)] = [I]. The initial conditions simply state
thst if the process is in state i1 at any given time, it is also in
state i zero time units later, 2t
Hence, a set of differential equations can be written and the Lol

transition probabilities calculated, The solution to the matrix Lotnd

}

.'l

L]
5
'.','.2

equation is

\‘;\'
(N

'
4

[(P(t)] = oAt

b Y Pa e Yo B J
“ 5
P
NhS A

g

&
h Y
77

where

2.2 3,3
Qje [0 R ) b R
o 1] + [Qlt + —m— + —— ¢ . (2.63) R

These oquations provide a formal solution, In practice this method is A
often so cumbersome that slternate methods must be sought [CLAR70]. }-:‘E{'
Recall that the primary purpose of finding Pij(t) was to determine

Pj(t). That is,

[ 4
Pj(t) = 3 Pyy(t) Py(0) . (2.64) et
i=0

The derivative of this equation is NS

dP, (t) .2 [‘“’u“’] P,(0) . (2.65) e
dt  i=o L at :

dP, , (¢) 2t

it , ylelds .;:::

Substituting Equation (2.58) for
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dt  i=0
kj

k=0
k#j

term is Pi(tL Therefore,

dt
k#j

or in vector form

av(e) .
it v(t) [Q] .

2.5.1 The Poisson Process

- 0 when k¥j-1
xj ¢ when k=j-1
and
| ‘ljj = -3 .

The forward differential equations are :

32

Mot

,\‘a,*:-\"r SO AT A ;.; .’ T A &

L [pu(t) a3 +kzoru(t) qk,] P4(0)

- [ 2 Pyj(t) Pi(O)] 954 + 2 [ } Pix(t) P‘_(O)] aKj - (2.66)
i=0 i=0

From Equation (2.42) the first term in brackets is Pj(t) and the second

dpj(t) = Py(t) 95 + 2 Px(t) axj -
k=0

Consider the problem of determining the number of arrivals that
occur in an interval of time t, given that the interarrival times (time
between arrivals) are exponentially distributed with a mean of 1/¢%.
Since only arrivals cam ococur Pij(t) = 0 when j<(i (departures are not
allowed), Since the probability of multiple arrivals in an

infinitesimal interval h is o(h), it follows that the rates are :

(2.67)

(2.68)

(2.69)

(2.70)




dPys(t) w —x pyy(e) j=i (2.71)
dt

Py3(8) g Byy(t) + & Py, juq (D) 2441 . (2.72)
dt

The solution to the j=i equation is obviously
Py (t) = o0, (2.73)
The results of the j=1 equation cam be substituted into the j=i+1

equation to obtain

Pi,i41(8) w g By j4q(t) + 278, (2.74)
dt
or

Pi,i41(8) & & Py 4u1(t) = Eo78E | (2.75)
dt

The solution is easily obtained by taking the Laplace transforms of

both sides. More precisely,

P (8) = (2.76)
1314'1 (s+c)2
and
Py jap(t) = te ot (2.7
It follows by induction that
gt
P, (8) = ——————— (2.78)
ij (s+c)j'1*1
and
(ze)d=1 o8t
Pij(t) = -—(jT;-)l_-_ (2.79)

This last equation is the celebrated Poisson process, Thus, the Poisson

process is a special case of the Markov process, It is important to
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omphasize that this also implies that for a Poisson process the time
betweon arrivals is exponentially distributed. The reverse is also
true, if the time betweon arrivals is exponentially distributed the

process is Poisson,

2.5.2 Contjnuous Time -~ Limiting Probgbilities

It was shown in the case of the discrete—time Narkov process that
under certain conditions the limiting probabilities existed, and were

independent of the initial state, that is,

= = n
j li- Pij 113-’:-.- Pj . (2.14)

- i
Recalling that the difference between P“‘ and P“(t) is that the -»'_’,-.

~

)

s
discrete parameter n is replaced by the continuous parameter t, it :: )
oty
seoms plausible that for the continuous—time process b
= "’F
&

This is indeed the case, and the conditions for the limit to exist are ‘Qi
the same as those for the discrete case. N
.-'.\-:
To derive a set of equations for P;, it is necessary to take the o
l1imit as t approaches infinity of both the backward and forward :&::
Chapaan-Kolmogorov differential equation, The backward equation results re
f:’f-.
S« § ':';A;.
ap,  (t) . 3 o

t
1im T4y ai4 lim Pyg(t) + lim, 2 Qx Py(t) . (2.81) o
k=0 <4

ks R

v
e

If the limit and summation can be interchanged then T
o
]
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o
Jn, Fu® =gy ¢ Jan Py e
at k=0 x .,'
K#i % z

[ J
= Py 2 ik el
k=0 2

o
- o * (2.82) ‘l"'.,
{ .
By applying the same procedure to the forvard equation and using the

results of the backward equation, one obtains :},\. '

t—=

1im 9P33(0) o 1in Pyj qpy + lim, } Pix(t) qpj = 0 (2.83)
=0

k*j . _-«".

[ X
Pjagy + ) Pxaxy = 0 (2.84) N
k=0

f k#j
| 2 Py axj = 0 (2.85) bt
| k=0

The vector form of Equation (2.85) is
vil=o0. (2.86) R
Equation (2.84), or (2.85), or (2,86) slong with the conservation of .

probability equationm, ..:::'s::
Z =1, (2.87) N

uaiquely determine the limiting probabilities, .

Note that the same results could have been obtained from Equation s
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(2.67) by taking the limit as n approaches infinity and setting

dP, (t)

lim =0, (2.88)

t—a

dt

The interpretation of Equation (2.84) is important. Recall that
('qjj) is the rate of flow from state j when the the process is in
state j. Since Pj is the proportion of time the prooess is in state j,

it follows that

Pj (-qjj) = rate at wvhich the process leaves state j. (2.89)
Similarly, when the process is in state k it goes to state j at rate

qkj' therefore
(2.90)

kz Py qxj = rate the process enters state j °
3

Hence, Equation (2.84) is a statement ot.tho equality of the rates at
which the process enters and leaves state j. Because of this the
limiting or steady-state probabilities are also referred to as the

equilibrium probabilities.
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CHAPTER 3

"ELEMENTARY QUEUEING SYSTENS IN EQUILIBRIUM

3.1 Istroduction

An olementary queueing system is onme in which both the
interarrival and service times are exponentially distributed. These
include a number of complex systems involving finite storage, multiple
servers, finite customer populations, and the like., All of these fall

into the category of birth and death processes,

3.2 Bizth snd Death Processes

A birth and death process is s continuous-time Markov process such
that: (1) the state represents the number of persons in the systenm,k,
(2) new arrivals enter at an exponmentisl rate Ay, and (3) people depart
the system at an exponential rate py. That is whenever there are k
persons in the system, the time until the next arrival is expomentially
distributed with mean 1/xk and is independent of the time until the
next departure which is itself exponentially distributed with mean
lluk. Thus, a birth and death process is a continuous-time Markov
process with states {0,1,2,..] for which transitions from state k may
go only to either state k+1 or state k-1,

In terms of the rates in the last chapter :
O k41 ™ Ay (3.1)
9y, x-1 = Mg (3.2)

The nearest-peighbor condition requires that qkj-o for Ix-j| > 1.
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Moreover, since
; qkj = 0, them qpy = —(Ag*ug). (3.3)

The problem is to determine the limiting or steady-state
probabilities. The equations derived in the last chapter could be used,
however, the derivation is straightforwvard snd follows from first
principles. Therefore, rather than use the results of the last chapter
which tend to camouflage the basic approach, the equations will be
rederived for this simpler case.

The probability that the system comtains k persons st time t+h can

be expressed as

Py(t+h) = } Py(t) Pyy(h) . (3.4)
i=0

If it is sssumed that the probability of two or more state changes in
infinitesimal time h is negligible compared to single state change,
then Equation(3.4) becomes
Py(t+h) = P (t) Ppy(h) + Pp_,(t) Pk—l,k(h)

+ Ppyq(t) Pk+1,k(h) + o(h) (3.5)
where
Pkk(h) = Plzero arrivals and zero departures iz h| k in population],
Pk—l,k(h) = Plone arrival and zero departures in h| k-1 in population],
pk+1,k(h) = P{zero arrivals and one departure in h| k+1 in population],

o(h) = P[multiple arrivals and/or multiple departures in h].

In order to justify the o(h) assumption and to calculate these

probabilities, it is first necessary to find the individual arrival and
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departure probabilities, The following assumes that the process is in

state k, The birth probabilities are:

Plzero births in bh] = P[T%)h] =1 - P[Tbgh]

-Axh
=1-(1-e ¥
-Axh
)
apm?  (aym?
= - A h +* - + o
1= 21 31
= 1-A h+o(h). (3.6)
Plone birth in b} = P[T,Ch] _ i
-Axh
=1 - elk EﬁjQ
C ol toans g2 (ym3 s -:--;'-q
[ k 21 31 . ] R
NG
N
= Aghto(b). (3.7 AN
N
ll ’l.'s
P[two or more births in h] "Hf!
PR
ChLv
= 1 - P[zero arrivals in h] - P[one arrival in h] ;\ :
f‘-‘..-f‘
= 1 - [1-Agh+o(h)] = [Agh+o(h)] .,::..:.)1
™ ad
= o(h). (3.8) — S
The death calculations are the same as births except the parameter {:;1
Lo
Ay is replaced by .. More precisely, ea ol
|
Plzero deaths in h] = 1-p h+o(h) (3.9) }}Hﬂi
e
Plone death in h] = pyh+o(h) (3.10) f;:j‘
i
P(two or more deaths in h] = o(h) (3.11) b\ ;
._'_\ .,,' -.!!
LAY
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The desired joint probabilities can now be calculated:

P(zero births and zero deaths in h] = [1-A h+o(h)] [1-p h+o(h))

= 1-A h-pyh+o(h), (3.12)

Plone birth and zero deaths in h] = [lkh+o(h)] [1-ukh+o(h)]

= Agh+o(h). (3.13)

Plzero births and ome death in h] = [1-A h+o(h)] [pph+o(h)]

= pyh+o(h). (3.14)
Pltwo or more arrivals and/or two or more departures] = o(h), (3.15)

Substituting these results into Equatio. (3.5) and adjusting the
subscripts to account for states k+l and k-1 result in:
Py(t+h) = [1-Agh—pyh+o(h)] Py(t) + (A _;h+o(R)] Pp_,(t)
+ [pg4qb+o(b)] Prsg(t) + ofb) . k (3.16)
Following the uvsual procedure of subtracting Pk(t) from both sides,
dividing by h, and taking the limit as h approaches zero, ome obtains

aP (t)
dt

Although Equation (3,17) is valid for all values of k, it is sometimes
more convenient to separate it into two equations, onme for k=0 and one
for k21, This is because some of the terms are zero when k=0, That is,
it is impossible to have a negative number of customers, and when the

number of customers is zero the death rate is zero, More precisely,
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dP,(t) % d
0 RV,
T = -lopo(t) + plpl(t) for k=0 (3.18a) ".'!:'l
. won4
dP, (t) N k",
T = TOxtdP(t) A Py g (8) ¥y Pyyy (8) for k31 (3.18b) ‘Q}ﬁ?
:. :fu::
Equations (3.18a) and (3.18b) are identical to the equations that would

% ""- Y
have been obtained by substituting the proper values of Uy into ::Ej:'
"Ll

Equation (2.67). el
bR,

The solution to this set of differential equations depends on the i
.-.‘:-'_‘\.P

rates Ak and Hye Unfortunately, no matter how simple 1& and By are, it ’:i{{
-

is nearly impossible to obtain the transient solution, Fortunately, f;::;
fi"\ﬁ‘.

one is usually only interested in the steady-state solution, and it is e
- \.'_\".
casy to obtain, The limits as t approaches infinity of Equations E%f'

(3.18a) and (3.18b) are

0= lopo + "lpl for k=0 (3.19.)

0 = -(xk"‘"k)Pk + Lk_lpk_l + llk+lpk+1 for kll, (3.19b)

or
loPo b "lpl for k=0 (3.20.)

Ogtug)Py = Ay 1Pyy *+ MparPreg for 121 . (3.200) %

The left hand sides of equations (3.20a) and (3.20b) are simply the
rate of flow out of state k, while the right hand sides are the rate of
flow into state k. In problems of this sort it is often helpful to
sketch a diagram showing the average rate of flov from one state to

another. Such a state—transition-rate diagram is shown in Figure 3.1.
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Figure 3.1 State-Transition-Rate Diagram of the Birth and Death Process,

A

By equating the flow rate out of a state to the flow rate into the

PN,

SN S
LR R AR

same state, the following equations arise:
Zate out = rate in

AoPo = MPy

[

»

T A PR
<,

£,

state

L ¢
4

»
v 5
2

0

.
Ve
L]
.

1

v '- ":' .'-:_.:'. c."l

SREIEE S 4

.
e

e,

o'

2 A1Py*ugPs

(lk*‘llk) Pk

<

3 A Pyt Py

. 2 a
'.("/‘.t‘
P LA

(3.21)

k,k>1

£

Ap-1Pr-1*Px+1Pr4q -

<

::’;;:a

|

Solving these equations in terms of Po yields:

SN

NP
v

P
%

P

A
0
— P

o1

L4

Py

*

<,
’

e

0

Iy

.
N
27

Aory

P
5 L] 0

L) b
L 0

e Sy TR e

Kihghge - oMp-1hx

(3.22)

Po.
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%

v e

) Py can be determined from the conservation of probabilities equatiom. :%-
¥ ’ L )
That is .

; ) ° . '
? = L%
| 2 Pe 5
k=0 N ':

i - 4

Po + Py ) MoriraeecMp-ohyg =g .

! NOLSLELIIER e o

’ @ 1 ;::$ )
X - LA
) Py = [1 + 2 *g*;’*g---h—g;;-;] . (3.23) ;(f:-

; k=1'172F3°°*Vk-1Vk ours.
« Frpmd
1\’

,\ P

Clearly for the limiting probabilities to exist it is necessary .‘:,:.\_:

N

$ A
. that ° iy

, UL L IR L - ]
, J‘::
b This condition also may be shown to be sufficient [KLEI7S5]. :::.:'\‘:
"..'.'.

3.3 Birth and Death Processes and Elementa uenein stem .

» '\".
A

By properly selecting the birth and death rates, a number of _:_:

) o
rather complex queueing systems can be modeled., The birth process ::,'

. ..--
corresponds to the arrival process and death process to the service )

‘I:'.'

process, If the system is in state k, the arrival rate is *k and the ::-.;

. I
! service rate p,. The birth and death model does not explicitly allow :;:"'
H -

for specifying a rule for deciding which among several customers is to e

R

' be served next, nor is one required. This is because the state of the \:‘:
] _::\
process is invariant to the order in which customers are served, The -::.-:

reason for this is that all customers are assumed to be statistically -'_

. L

Ly

, identical and the service process has the memoryless property. Perhaps :::';
A

b/ R
3 the most commonly used rule and the one whose operation is most essily X
) a¥a
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visualized, is the first-come-first-serve rule, Hovever the service
discipline can be last-come-first-serve, or service in random order. An
arriving customer can even preempt the service of a customer without
changing the dynamics, The key in all these cases is that a server is
never idle when customers are waiting in the queue, and that the
probability of a customer departing the service center in the next
incremental interval is uyh independent of the amount of service
previously received, Of course, it is necessary that the service
discipline be work conservative., However, this does not imply that if a
customer is interrupted the amount of service he received must be

remembered. The PDF of the service time is memoryless!

3.4 WM/

The simplest and one of the most celebrated queneing systems is
one in which the birth and death rates are constant regardless of the
state of the system. More precisely,

Ay = A fork=0,1,2,... (3.25)

py = p for k =1,2,3,... . (3.26)
Recall that when the arrival rate is constant (that is it does not
depend upon the state of the process) the arrival process is Poisson,

The stato~transition-rate diagram of this system is depicted in

Figure 3,2,
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Figure 3.2 State-Transition—Rate Diagram for M/M/1 System.
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By equating the flow rate out of a state to the flow rate into the f.'\,‘:
‘J'.'\-" ",
same state, the following equations arise : ﬁ::\ﬁ
.:s";_-s
state rate out = rate in W*-ﬂ
0 APy = kP, - D
Cd
1 (A+p)P; = APy +uP, ﬁ. )
Yot
3 (A+p)P3 = AP +uP, . Rt
I. I\
kK1 (MIPy = APp_ +uPL,; (3.27) R
SN
¢
Solving these equations in terms of P, yields : ;‘::‘:\
Py = (M/w) By PN
2 ‘Qgtﬁ )
P, = (/w3 By R
P, = /wE P, (3.28) = A
W
Again, Po can be found from the conservation of probabilities equation. "{:
FNTAY

More precisely,

o«
}Pk-1
k=0




[ )
Po + ) /wE Po =1
=1

Po ) /wE =1
k=0

.
Po I-G7m

Po = 1‘(1/“)0 (3.29)

The utilization of the service center is
p = 1~Py = A/u. (3.30)
The quantity A/p appears frequently in the performance parameters, and
therefore it is customary to give them in terms of the utilization, p.
The steady~state probability that the system contains k customers

is x
Pk = p*~(1-p). (3.31)

The mean number of customers in the system snd its variance can be
calculated by the probability genmerating functionm (which is very
similar to the z-transform) [KLEI75] [KOBA81]. By definition the

probability gemerating functionm is,
[_J
k=0

The mean or first moment is is equal to derivative of P(z) evaluated at

z equal to one, More precisely,

g; [kzopk z“]z_1 .‘20:_; [Px zk]z_l-kzox Py = EIN] =L . (3.33)
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The second derivative of P(z) evalusted at z equal to one is
®
} k (k-1) Py = E[N?] - E[N] . (3.34)
k=0

Hence, the second moment and variance are respectfully:

2
g = 2 + E[N] , (3.35)
dzz z=]

Var[N] = E[N2]-(E[N])2, (3.36)

Returning to the problem at hand and substituting Pk-pk(l-p)

roesults in

P(z) = 2 pk(l-p) 21k = (1-p) 2 (pz)k
k=0 k=0

1-p

1-pz

’ (3.37)

and
L —"* (3.38)
and

Var[N] =

° (3.39)
(1-p)2

The average response time can be calculated by Little’s law. More

precisely,
L L P 1

R I X T N1 R(i-p)

* (3.40)
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Little’s law can also be vsed to calculate the mean number of >3
customers in the queue, Lq. However, it is first necessary to calculate "-:"\
the mean waiting time, 'q' Since the mean of a sum is equal to the sum e,
of the means (irrespective of dependencies involved), it follows that iy

R=VW_+ EIS], (3.41) g
and 1 ’:‘?‘

1 1 [ L
- - - - 0 g .42 * J
'q R - E[8] w(1p) u - w(i-p) (3.42) 0

Little’s law can now be applied to determine Lq: .;:_ '

2 v
A P p Hhy

L =AW == - (3.43) )
q 14 u (1-p) 1-p A

Another interesting quantity to calculate is the probability of AAF)

r
S

L
ALY
Py "-' &

finding at least i customers in the system:

oS
e

[ ]-OP = S pE1-p) = (1-p) S o - Elapl  (3.40)
e kzik kzip ’ ’ [kzop kzop ] ’

& 4]
*
gLy

t
!

AN
* >

-
N

where the last expression follows upon application of the algebraic

identity
121 r"."\‘

Y oF = a-ph/a-p. (3.45) F
£=0 '

Figure 3.3 compares the normalized mean response time (1/p=1) of
the M/M/1 system to that of the D/D/1 systems. For both systems the end- \:::E
point values are the same. Nore precisely, when p=0, the normalized 'y
mean response time is one, and when p=1, the response time is infinite, v

However, for values of p near one there is an extreme difference, For
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example, when p=0.9 the mean response time of the M/N/1 system is ten "
times that of the D/D/1 system. Clearly, the D/D/1 curve is the optimal :h“
Gh,
one, and s large penalty is paid for operating the M/M/1 system near :‘u;:
L}
i
its maximum capscity. The reason for this is that there are no ,3::,;::
statistical fluctustions in the D/D/1 system, whereas both the .
-.‘
interarrival and service times are random varisbles in the M/MN/1 :".:E"
Ao
system, Any reduction in the variation of either of these reduces the A
response time, while any increase results in an increased response :‘v;‘,
..\
time, In fact it will be shown later that the mean waiting time (a :"‘ '
} e
(RS
quantity closely related to the response time) of the N/D/1 system is ﬁ
exactly one-half of that for the M/M/1 system. e
- o
b NS
p Figure 3.4 compares the mean number of customers in the M/M/1 ,:’:
v'q ]
e
system to that of the D/D/1 system. Note that curve for the D/D/1 is a 3’- '
e %
straight 1ine over the region p(1 (L=p), and when p=]1 the numbdber of 15
.. gl
customers is infinite, Again the differences in the curves are due to }a: 3
)
the statistical fluctuations in M/N/1 system. '5:*'
. R
AN
3.5 M/M/m - Finite o i-i:\
Now consider the case when the number of servers is more than one w -
AR R
and finite, Assume there are m servers. The birth and deaths rates are: \'.&
N
lk = L k - 0.1.2.... (3.46) %.&
“
uy = sinfkp,mp] . (3.47) -
The state-~transition-rate diagram is depicted in Figure 3.5. ‘;4-".):
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X
The steady—-state eguations are : ’:';
Yy
state gate out = rate in A
0 uo = “P1 ;-:\
N
2 (A+20)P, = AP; + 3P, R
3 (A+3p)P; = AP, + 4pP, MY,
=1 (A+(m-1)p]Py_; = APy, o + muPy %ﬂﬁ
n+l (A+mp)Poyy = AP, + mpP_ ) ik
'«
n+2 (A+mp)Pyy, = APy, + muPp,s . (3.48) PSR
R
":".',.k
x:,\:,\‘
Solving the first m equations in terms of P, yields: "*“"_
Py = (A/p) Py
P, = (1/2) (M/w? P,
P, = (1/6) (/)3 By , h
and 3 0 -
P, = (1/k1) (W/wE B, for k¢m . (3.49) A
RS
)
Similarly, solving the equations for states m,m+l, and m+2 yields - N

\ B
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Ppeq = (1/mim) (/)™ By
Py = (1/min?) (A/p)™*2 B,
» Pais = (1/mtnd) (/™3 p ,
P, = (1/m1s*™ W/WEPB,  forkdm.  (3.50)

Collecting the results together

{(1/-1-“") a/wk P, for kym
P, =
(1/x1) (/w* B, for k¢m , (3.51)

or equivalently

r(lp)k
k!

P, for kim ,
Py =< .
a" p
q m!

A

where p ™ -,
ny

Py for k)m , (3.52)

Solving for Py in the usual way results in:

1 ( )k ® -~ x
o[+ ) FH— ¢ 2 -1
k=1 k=m
.y (mp)¥ (mp)® <
o[ 2 g v 26t ]t
k=1 k=0
N (mp) ¥ (mp)™ -1
Po = [ 2 el (1-p) ] y (3.53)
k=1
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Similarly the mean number of customers in the system is:

kzlk "

} k (lp)k . E x =" pk
0

2 (mp)k (-p)'
= Py

k
(k“l)l 0 2 (m+k) p

k=0

2

Po (mp) 2
k=

(mp)E . (mp)™

k! 0 m [ 1 (1-p)2 ] - &

~l

Es

n

n! (l-p)2

e

e

Figure 3.6 is a plot of the moean number of customers versus the
arrival rate for m=1, m=2, and m=3 (1/p=1), Observe that the shape of

all three curves are similar,

Again Little’s Law can te used to determine the mean response

time:
L L 1 p (mp)™1
RS e m - [1+—————P ] . (3.55)
T » & al (1-p)?

Figure 3.7 is a plot of the normalized mean response time verse
the arrival rate for m=1, m=2, and m=3. Again observe that the shape of

the curves are very similar,
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Mean Number in the System

Arrival Rate

Figure 3.6 Mean Number of Customers Versus Arrival Rate
for the M/M/m System.
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3.6 MN/M/= - Infin of Serve
Now coﬁsider the case when the number of servers is infinite. That
is, vhenOvot-a customer enters the queve, he immediately starts to
receive service, This system is equivalent to ome in which the number
of servers always equals the number of customers in the system. In
terms of the birth and death model the rates are :
Ay = A k=0,1,2,... (3.56)

uk = ku k = 1.2'3.... L] (3'57)

The state—transition-rate diagram is depicted in Figure 3.8,

H 2u 3u ku (k+1) u

Figure 3.8 State-Transition-Rate Diagram for N/M/= Systenm.

The resulting equilibrium equations are:

s;ggo tg;g 2!; = ;“g ‘E
) APy = WP,
2 (A+2p)P, = AP +3pP,
3 (A+3)Py = AP, +4pP,
k,k)1 (A+kp)Pp = APy +(k+1)pPp,, . (3.58)
57
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Solving these equation in terms of Py yields:
Py = (A/p) P,
P, = (1/2) W/w? R,
Py = (1/6) (/w3 B

P = (1/x1) /wE Ry . (3.59)

Solving for Po yields

Po [1+ 5 (1/x1) (x/u)‘] -1

k=1
< x
Py [kzo(llk!) (M p) ] -1
Py 01," =1
By = o7MB, (3.60)
Hence, Py = (/K1) /pE o7AE, (3.61)

The mean number of customers in the service center is:

-Ek(uu)umF.4N
k=0

(1/x1) (W /p)E
)
= K/ll . (3.62)

sy (A/p)
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The throughput of the system is obviously A. The mean response 2

L%,8 5
time can easily be determined by Little’s law: P
()
L 1 T
R= x = -"- . (3.63) 1ol

This is obviously correct since each arriving customer is immediately :,‘_\.
-\‘;\"\n

granted a server and the average service time is 1/, R(.:g
\Pfﬂ. {
A
3.7 M/M — Finite Storage LAy
o
PAN
Now consider the problem in which the arrival rate and departure :_':.f'
)

g

rates are constant, but there is a maximum namber of customers that the ¥a #
.I"f;
system can contain, Assume that at most the system can hold K customers ~ \'.J:
.._:.-_‘.
and that any further arriving customers will refuse to enter the queue j"\;::
-J.'-f‘\,'
and will depart immediately without receiving service. This system is e

equivalent to a birth and death process with the following rates:
ple
A k&K )

Ay = "

k s

0 kXX (3.64) it

'lk = n k= 1,2...0‘ . (3.65)

Thus, as soon as the system fills up, the input is effectively turned (

off. The state—~transition—rate diagram is depicted in Figure 3.9, =

Figure 3.9 State-Transition~Rste Diagram for N/M/1/K system. NN
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Obviously the equations are the same as for the N/M/1 case except
that Py =0 whén k)X, Hence,

a/wk py k(K
P, =
0 oK . (3.66)

Solving forx Po is somewhat more difficult, but again the comnservation

of probabilities equation is used,

Py + S (/¥ Py =1
=1

Py S a/w)k =1
k=0

P - K+1 1
0 [ 1-(A/p)

e ) (3.67)
1-(a/p)k+1

Hence,
_ b-o/miarmk

. (3.68)
1-(/ k1

Py

Since there is only a single server the utilization is
1 p=1-Py ., (3.69)
and mean throughput is

T=pp, (3.70)

Another quantity of interest in this system is the probability

that an arriving customer finds the system full, and therefore leaves
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Jo ol
A
e,
)
"".:;
without receiving service. This probability is 3
.»
‘ by
[1-(/w 1 /p)E Ny
Py = Tl . (3.71) Ny
1-(M/p) m :}S
[ “'
N,
TN
RN
3.8 MN/M | t ez Populs - AN
IS
T

This model is often referred to as the machine repsir model. :."2 '

Al

Consider a job shop which consists of M machines and one serviceman, .
WS
Assume that the amount of time each machine runs before breaking down 2:'-;\.‘*
Ny
is exponentially distributed with mean 1/), and assume that the amount :'\:.”' \

7

of time for the serviceman to repair a machine is exponentially

;

distributed with mean 1/p, The birth and death rates for such a system

A
;,.
sre: S%ES "
. “ f
(Fk)A kM
lk = ?'uv:a
0 KM (3.72) %
Nl
ﬂk - un k= 1.2.3...- . (3;73) o, .C$
i
Since there is only one serviceman the service rate is j, NON
_\._\:_‘-
regardless of the number of machines down, On the other hand, if k ;:j:‘:s
N
machines are not in use, then since the M-k machines in use each fail ::_‘;:f‘;"
at a rate A, it follows that A, =(M-k)A. In the sense that a failing X
k ﬁ," |‘..
machine is regarded as an arrival and a repaired machine as a ! ‘.‘:
Wl
departure, the system represents s queueing system with s finite ! '
population, The state-transition-rate diagram is depicted in Figure -'-.-"\»\
et
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Figure 3.10 State-Transition-Rate Diagram for M/N/1//M System. :'ﬁ

(i 5)

The resulting steady—-state equations are: o
' s
state Zate oyt = gate jm i

,‘\

)
0 M\P, = uPy g-: ::

1 N-1)A+p]P; = MAP,+
[< ) ll] 1 0 ll-Pz :,,

o
! 2 [(M-2)A+p]P; = (M-1)AP;+uPs ’*Z}?
3 [(M-3)A+p]P; = (M-2)AP,+uP, gﬁ
1) "

x,k)1 [(M=k)A+p]Py = (M+1-X)APy_ +uPpyy (3.74)
. 1Y

4 V .
! Solving these equation in terms of Po yields u':
. %
N
P, = N (Mw) Py 5"#2
P, = NOEF1) (A/w)? Py oy
EaS Ny
* 9

Py = NOF1)(#2) (A/w)3 Py ok
e

1‘;?.

/R 1] /E By xgH

P, = DAY
k o

0 M. (3.75) pAG
h..,.'s:Q
=

Solving for Po is the usual way results in: oy
- e

[ S [(M1/(M=Kk)1] ()./u)k] . (3.76) »

i,
'.l.
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e
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Since there is only s single server the utilization is

P-l-po

-1
-1 - [ S (417 (Mk)1] (x/u)*]
k=0

[ S /01 /wk] -1

x=0
s [/ (x) 1] (A/p)E
k=0
[1/06Kk)1] (A/p)E
k=1
S (1/(8x)1] (A/p)E
k=0

Finally letting i=m-k and changing variables results in:

-1
(a/11) /)i

i=1

(1/741) (wi
i=0

Similarly, the mean number of customers in the system is:
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k M1/ (K1) (A /wE
. k=1 :"’ ‘.:v
L= -y-L2. (3.79) :a.“:'.

S N1/ (x) 1] (A /pE o
k=0

U
The mean throughput is ::',?o:

T=pp. (3.80) o

Again using Little’'s Law to find the response time yields:

R= -l: ] u-(xl")p - X - !';- b (3.81) 'h

T [ p R

Y
Q‘ ‘
X

3.9 er Elements uein st 8

Several other queuneing systems can be modeled by judicious 'v'
?

sssignments of the rates l'k and Bye For example, the following systems
are solved in Kleinrock : N/M/m/m - M server loss system, N/N=/ /M - :‘_
finite customer population - infinite number of servers, MN/MN/m/K/M - ".i
finite population ~ m servers - finite storage, and other cases <

including discouraged arrivals [KLEI7?S]. o
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CHAPTER 4

QUEUEING MODELS WITH GENERAL SERVICE OR ARRIVAI, PATTERNS

4.1 The M/G/] Queueing System

The N/G/1 model represents the contention for s single server
under the assumption that the arrival process is Poisson, Thus, this
model is more general tham the M/M/1 in that there are no restrictions
on the distribution of the service times., The difficulty in analyzing
this model stems from the fact that the distribution of the service
times is not memoryless, Information about when the service started
assists in predicting when the service will be completed, Hence, the
number of customers presently in the system is not enough information
to predict the number of customers in the future., Therefore, the
process can no longer be represented as a continuvous-time Markov chain
with the number of customers in the system serving as the state space.

However, if the system is observed only at departure instants the
past history plays no rell in predicting the future, This is because
service is just starting, and prior informationm cannot aid in
predicting when it will be completed. The past history also cannot help
with arrivals since the interarrival times have a negative exponential
distribution and are therefore memoryless, Hence, if the system is
observed only at departure instants (immediately after a departure) the
system appears to be a Markov chain, Such a process is referred to as
semi-Markov process with an embedded discrete—time Markov chain, That

is, the behavior of the system at the departure instants can be
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described by a MNarkov chain, Fortunately, the solution at these

embedded points happens also to provide the solution for all points in

time [COHE69] [CINL75].

Recall from Chapter 3 that the limiting probadbilities of a
discrete—time Markov chain can be found from
vV = V[P] (4.1)
where V = [PO'PI'Pz'“‘] and [P] is the one-step tramsition matrix. The
elements of [P] are the one—step transition probabilities:
Py = PIX y=ilx =1 . (4.2)
That is, Pij is the conditional probability that the next state is j,
given that the current state is i, Since the embedded process is
obtained from the continuous process by observing the system
immediately after a departure, it follows that
I, -1 + Ajyy for X 01

An+1 for X =0, (4.3)

xn+1

where X is the number of customers in the system at the nth departure
point and An+1 is the number of customers who arrive during the service
time of the (n+1)st customer. Thus, j¢(i-1 is an impossible situation
whereas j)i-1 is possible for all values since any number of arrivals

can ocour during one service time, It follows that the form of the one-

step transition matrix is:
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7‘
4,
)l

'.\:'_:‘
At
-~

TR A

where a, = P{k arrivals during one service time]. For example pi.i-l is

'S
&% % %

Py
. I.:‘ 5" ﬁlﬂ Pl

NN
res
~

the probability that zero arrivals occur during ome service period, and

Pi.i is the probability that one arrival occurs during the service

,,.
3
o)

&

S<
A

period (the one arrival offsets the one departure). Also, note that the

[
7
g -'j'f

-

first two rows of this matrix are identical, This is because if a

v

departing customer leaves an empty system, the state remains zero until ir N
an arrival occurs, The graphical form of the process is depicted in .

Figure 4.1. The labels on the arcs sre probabilities. f,.

Figure 4.1 State-Transition-Probability Diagram for the M/G/1 System. AN
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Now, since the arrival process is Poisson with rate A, the
conditional probability of k arrivals, given that the service time is

T, is

-AT k
P[k arrivals | the service time = t] = LT'LM')— . (4.5)

Thus, the unconditional probability of k arrivals is,

-At k
g = r ‘—-—;{Lﬂ— dB(<) , (4.68)
0
or -t x
ay = r °—-k4'£)— b(z) dr , (4.60)
0

where B(t) is the probability distribution function (PDF) of the
service times, and b(t) the probability density (pdf) of the service

times.

Returning to the problem of finding the limiting probabilities, it

follows that the component form of Equation (4,1) for the M/G/1 case is

k+1
Py = Pg ay + 2?1 8x41-4 o (4.7)

i=1
This equation can be solved by the method of probability
generating funotions, By definition the probability gemerating functiom

is

F(z) = ) £y 25 . (4.8)

The procedure is to use the probability gemerating fumction to

transform Equation (4,02) into a function of z, snd to then solve for
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P(z). Once P(z) has been determined, the limiting probabilities can be

found from the series expansion of P(z). More precisely, the

i

coefficient of the z~ term is Pi' Multiplying both sides of Equation

(4.7) by ¥ and summing from k=0 to k=o, results in

} Px 2k - 2 Po ax £ + E } Pj 8p41-1 £ (4.9)
k=0 - k=0 i=1

Interchanging the order of the double summation and simplifying results

in :
P(z) = Pg a(z) + } 2 P; ag41-4 2k,
i=1 k=i-1
= Pg a(z) + 2 2 Py sy 2
i=1 j=0

Pg a(z) + 2”1 2 Py 21 } Y 2d
1=1 i=0

Py a(z) + 71 [P(z)-Py] a(z) . (4.10)

Solving this last equation for P(z), results in

Py a(z) [z-1]

— . (4.11)

P(z) =

From the definition of the probability generating fumctiom, a(z) is

< -AT k
a(z) = } [rl—k{-"—‘-Lb(:) dt]zk . (4.12)
k=0 "0
69
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Interchanging the order of the summation and the integration, results

in:

-A K
a(z) = j’ 2 2—-::§51£l- b(t) d(z)
0 x=0

= I. o~ (AA2)T ey d(e) . (4.13)
0

The last equation is the same as the Laplace transform of b(t) except
that the parameter s has been replaced by A-Az. Let b.(s) denote the
Laplace transform of b(t), then a(z) = b (A-rz). Substituting the
result into Equation (4.11) results ir

Py b (A-Az) [z-1]

P(z) = (4.14)

z - b.(l—lz)

Po can be determine from this last equation by taking the limit of both

-

sides as z spproaches ome, The limit of P(z) as z approaches ome is :

[ J [ ) «®n
x k
1im $ Py ¥ = J1impp F = Yo -1 (4.15)
' kzo kzoz 1 kzo

In addition the limit of b‘(l‘kz) ss z spproaches one is b'(O) = 1,

That is, b{(t) is a density fumctiom, and

I. b(t) dv = 1, (4.16)
0

It follows that the limit as z approaches one of Equation (4.,14) is
indeterminate and 1'Hopitsl’s rule must be used, The derivative of

b‘(k-kz) evaluated at z=1 is
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db‘gx-xzzl . d I' -(A=Az)
dz z=1 E;[ 0 ° b(z) dt]z-l

- d I -(A-rz)c
J: E[O ]z.1 b(x) de

=) Iﬁ T b(x) dv
0

= AE[S] , (4.17)

where E[S] is the average or expected value of the service time, Using
this and applying 1'Hopital’s rule results in

Py = 1 - AE[S] . (4.18)
The utilization is therefore

p = 1 - Po = lE[s] . (4.19)

Substituting this into Equation (4.,11) yields the Pollaczek-Khinchin
(P-K) transform equation
(1-AB[S]) b°(A-Az) (z-1)

P(z) = < . (4.202)
1-0b (A=-22)

or equivaleatly

(1-p) % (A-rz) (2-1)
P(z) = . . (4.20b)
1 -0 (A-2z)

As deorived in Chapter 3 the mean value of Pk equals the derivative
of P(z) evaluated at z=1, After using 1'Hopital’s rule twice the result

is :
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A2E[82]

= mn—[él—)- + AE[S] . (4.21)

The appearance of the second moment in this equation comes from the
fact that:
d2p* (A-22)

= A2E(82] . (4.22)
dzz z=1

The mean response time can be calculated from Little’s law, More

precisely,

L L AE[S2]

Ty = eI + E[S] . (4.23)

The mean waiting time is obviously 'q = R - E[S]. Hence,

AE[S2]

a = F(1-AE(SD) (4.24)

The mean number of customers in the queue can be determined from 'q’

That is
Lq = T'q - LIq

A2e(s8?)

® 2(1-AE(S]) 4.29)

As an example consider the M/M/1 system, The density function of
for the service times is
b(t) = pe BT , (4.26)

and

b°(s) = ’ (4.27)

P
4
2

A
)

“p Ty S B
o
<

SRR
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... _ - [ .
b (A2) = e (4.28)

Substituting into Equation (4.20b) results in

P(z) = 2. (4.29)
1-pz

P(z) can be expanded into positive powers of z by simply dividing 1-p

by 1-pz. The result is

R
1- th
—f. (1-p) [ 1 + pz + pzzz + p313 + 1. (4.30) '-$
1-pz \
»
o
W
Thus, . !
. ot
P, = p (1-p) (4.31) 2o
n’\"‘-
which is the same as before. ;_f_';-;.
ALY,
m
4.1.1 C ents on the Steady—-St Solu n and that o bedde ¢g$_
N,
Msrkov Chaip o

Early in this chapter it was stated that the steady-state solution
for all time and that of the embedded Markov chain at the departure
instants were the same. Unfortunately, there is no simply way to prove
this statement. It was, however, shown that P, of the embedded process
was 1-AE[S], which agrees with the result in Chapter 1, which is valid
for all work conservative single queneing systems, Hence, Po is the
same for both processes. Also, since Po is the long-run proportion of
the time that the system is idle, the expected values of the normalized

idle and busy periods are the same.
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The approach taken here of simply stating that the solution of

both processes is the same, is that taken by most texts on queneing

theory [KLEI75] [ALLE78] [ROSS80] [KOBA81) [HAYE84]. The reader is

advised to beware of short simple proofs claiming to prove that both

processes have the same solution, In particular the proofs in Gross and

Cooper are incomplete [GROS74] [COOP84]. Both prove simply the

probability that an arriving customer finds k customers in the system

is equal to the probability that a departing customers leave k in the

L

T
system. As pointed out in Ross and Kleiarock this is true, not oaly for EEE-
the M/G/1 system, but also for the M/M/1, G/M/1 and G/G/1 systems "
[(ROSS80] [KLEI75]. Furthermore, it is proven by a counter example in
Ross that an arriving or departing customer does not necessarily see
time averages, That is, the probability that an arriving customer finds ?:_

k in the system is not necessarily the same as Pk. However, both Ross
and Kleinrock state, without proof or referemces, that if the arrival
process is Poisson then an arriving customer sees time averages.

Additional comments on this subject are contained in another

section in this chapter. {i
;l
4.1.2 M/D/] ~ Poisson Iaputs - Constant Service time f

As a second example of a M/G/1 system, consider the case in which
the arrival process is Poisson with mean rate A and the service time
constant with rate p. Since the service time is constant

E[(S] = 1/p , (4.32)
and

E[(S2] = (E[(S])2 = 1/4% . (4.33)
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Substituting these results into equations (4,21), (4.23), (4.24) and .”'
O.'l
\)
(4.25) yields: N =
)
- (A./u)2 . A :~-',§
2(1-A/p) g ;{J
¥
I .o n—
2(1-p) NI
Pt
p pz ‘ o 5'
1-p) _ 2(1-p) (4.36 Raed
R
R
a1 NN
l-2(12\./)"“ oo:'
v g Sl
e, N
2p(1-p) p RNy,
,f‘
1 4 » ;(-V‘..‘i
= - (4.35) U
n(i-p) 2u(1-p) e
‘ ,\::::-:
.'\-J.ﬁ-'(. ¢
AN
t:-."\-
Y
SRV O (4.36) R
T 2(1-A/p) 2(1-p) ) S
A
':'.‘::':'
e e
v M e 4.37) L
1 2(1-a/p) 2u(1-p) ' oevel
The mean performance equations for the N/D/1 system are compared
to those for the M/M/1 system in Table 4.1. They are also compared
graphically in Figures 4.2, 4.3, 4.4, and 4.5, Observe that L, Lq. R,
and 'q are all less for the M/D/1 system, This is because equations
(4.21) and (4.23)-(4.25) are directly pr-portional to the second moment
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Table 4.1 Comparison of M/D/1 and M/M/1 Equatioans. o
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Figure 4.2 Curves of L Versus p for M/D/1 and N/N/1.
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of the service time, That is, for a fixed mean value, as the second
moment or variance increases so does L, Lq. R, and 'q' Also note that

Lq and 'q are exactly one-half of that for the N/MN/1 system. This

results from the fact that the second moment of sexvice time for the

N/M/1 is 2/p%, which is exactly twice that of the M/D/1 system.
Although they will not be derived here, the probability genmersting

function, customer distribution and veriance for the M/D/1 system are

[LAVES3]:
P(z) = 170 172) (4.38)
1 - z°P(1-l)
(jp)k'j'l(jp'*k-j)o”

Py = (1-p) S (-1)kJ , (4.39)

% (k-3)1

2.,.3 4

Var[N] = p + —2 120" P . (4.40)

6(1-p) 4(1-p)

Notice that these equations (and their derivations) are much more
complicated than the corresponding expressions for the M/M/1 system.
That is, the fact that service time is constant drasstically complicates

the snalysis rather than simplifying itl!

4.1.3 M/G/1 Nonpreemptive Priority

While this might not seem to be the appropriste place to discuss
the priority service discipline, all the results here apply also to the

M/M/1 pospreemptive priority queue, snd furthermore these are the only
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knowa roonl;s. A priority queveing system is one in whioch customers are
grouped into Flnssos and then given priority according to their class,
Although there are several service disciplines based on priority, only
the nonpreemptive discipline will be discussed here, While it would be
nice to have an explicit expression for the probability distribution of
customers or a transform expression, no one has derived such an
oxpression. Thus, the following analysis is concerned with determining
the mean values of the performance parameters,

It is assumed that the customers are divided into n classes
numbered 1 to n, and that the lower the priority number the higher the
priority. That is, customers in priority class i are given preference
over customers in class j, if i(j, Customers within a priority class
are served with respect to that class by the FCFS rule,

It is also assumed that the arrival process is Poisson. More
precisely, class i customers arrive from s Poisson source ;t an average
rate of A;. Hence the combined arrival process is Poisson with rate A,
where A = Ay + Ag +°°° + 24, Each class of customers may have its own

general service time distribution, Hence, the combined PDF of the

service time is given by

11 *z xn
B(t) = ~ B(fl) + x B(tz) + +'x- B(tn) » (4.41)
where
B(ti) = PDF of the service time for class i customers,
and

A
i
~— = Probability the customer receiving service

belongs to class i.
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It follows that the expected value and second moment of the service

time are respéctively:

11 l2 ln
E(S] = . E[3;] + . E[S,] + °°° + = E(S,] . (4.42)
A A 'y
2 1 2 2 2 n 2
E[S“] = e E(8, ]+ = E[S8,°] + + = E[S,"1 . (4.43)

Since on the average li customers arrive per second and these
customers require an average of B[Sil seconds of service, then LiB[si]
is the percentage of time the server is serving class i customers.

Therefore,

p= 91 + pz + °°° + pn,
where

.

Now suppose that a customer of priority i arzives at the system at
time to and starts to receive service a time tye His waiting time is
thus " ti-tg. At ty let there be kj (j=1,2,...,1i) customers of class
J shead of the arriving customers, and let there be either one or no
customers in service at to. Also let kj’ (j=1,2,...,1-1) represent the

number of class j customers that arrive during t©_, and hence receive

q
service before the customer wio arrived at to. Nov let

tj = total time required to service the kj customers,

tj' = total time required to service the kj' customers,
and

Tp = the time required to finish serving the customer
in service at to.
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It follows that N
i-1
i=1 i=1
and
i-1

Va1 = Elxql = } Blz;’] + 3 Elcj] + El<ql , (4.46)
i=1 j=1

ari
[
1

sy

where 'q1 is the mean waiting time of a class i customer,

2
Lerlal

Since kj and SJ are independent random variable it is easily seen

‘s Ty v #
LR

'd
e e B

A NN
['s

‘ that
[ B[tjl - B(kj] B[Sj]. (4.47)
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S
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[ vl

Utilizing Little's law yields

[N

E[kj] - Lj 'qj . (4.48)

A Yy

Y

PN NN
‘&
L. I‘.)-’I

]
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AR

Elvy) = A E[8;] W,

u
X

(4.48)
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e
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Similarly,

Blvy'] = py Wy (4.50) N

L)
(ORI I

Substituting these results into the previous equation for 'qi yields

i-1
=1 = BN
or ;;;?;
!
$ pj Wqj * Elzo) N
§=1 S
’ ‘J
'qi - (4.5 .\:
1-04 '
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whore
i-1
61_1 = } pj .
i=1
By iaductioa on i ome obtains
B[fo]
'qi - ° (4.53)

(1'01_1) (1'01)

In order to determine B[tol sssume that n=1, and that the arrival
and service processes are the same as the carlier combined processes.
Hence, there is only one class of customers and they are seorved in FCFS

order. Therefore, 'q:l equals 'q for a M/G/1 system, and

B[‘!o] u[sz]

v, = .54
a  1-p  2(1-p) (4.54)
Solving for Elzy] yields
AE[S?
Blcg] = 1 * (4.55)

Finally, substituting this equation into the last expressioa for 'qi

results in

AE[82) .
Yai 2(1-0y_4)(1-0y) .56

The mean values of the other parameters follow directly from the last

expression, More precisely,
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The only other equation that has been derived for the
nonpreemptive queueing discipline is the variance of the response time.

The equation is given without proof :

AB(83)
3(1-0,_;12(1-p]

Var(V] = var[8,] +

Ae(s?] 2 | 5 23B18;%1-1815%1 ]
=1

+
4[1-01-1]2[1-91
i-1
AB(8%] Y A4E(8;%)
=1
+ (4.60)
2(1-0,_,1%11-p]

[LAVES3). Unfortunately, these are all the equations that have beer
derived for the nonpreemptive priority quemueing discipline. They are
far short of what ome would need in order to determine the queuve size
or buffer size so that overflow does not ococur.

The behavior of priority queues is illustrated graphically in
Figures 4.6, and 4.7. Figure 4.6 is plot of L1. Ly, Ly, and Ly (total)
for the M/M/1 priority system. It is assumed that all arrival rates and

service time distributions are the same for all three classes, It
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Figure 4.6 Curves of L;, Ly, L; and Ly for s N/M/1 Priority

System with Three Custo-or Classes.
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should aot be serprisiag that Ly is the same as the N/N/1 systes with
one ¢lass aad as arrival rate of x1+&z¢l,. Figure 4.7 is a plot of the
normalized meaa response time (E(8]=1) for the same system. Note that
in both figures the service disciplisme has the most effect oa the class
with the lowest priority (i=3), Figures 4.8 and 4.9 are similar to

Figures 4.6 and 4.7 except that the service time is determiaistiec,

4.1.4 Comments op the M/G/n Queweing Wodel

The M/G/m model represents the conteation for m idenmtical servers
that operate independently ia parallel mader the assumptioan that the
arrival process is Poisson, Thus, this model is a gemeralization of the
N/M/m model, Although this model is oftea encountered in practice,
analytiocal results have not been obtained for it. The primary reason
for this is that it is not a semi-Markov process. Nore precisely the
number of customers in the system st the departure instants is not
enough information to predict future behavior. Information concerming
the amount of service received by customers at the other servers is
relevant. Hemce, the system does zot possess au smbedded Markov chain
at the departure instants.

4.2 M euein ste

The G/M/1 queneing model represents the contention for a single
server under the assumption that the interarrival times have a general
distribution and that the service times have an exponential
distzibution, Compared to the M/G/1 model few snalytical results are

available.
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Since the arrival process is not memoryless, the process is not
Markovias. However, if the system is observed oaly just before an
arrival, it appears to be a discrete—time NMarkov chain. Hence, the
process is a semi-Markov process with an embedded chain, Unfortunmately,
the solution at these embedded points is not the solution for all
points in time [COHE69] [GROS74] [CINL75). Bowever, it is possible to
determine the mean values of the performance parameters from the
solution at these points,

Since the solution at these embedded points is not the steady-
state solution for all time, the symdol Pk will mot be used to
represent the limiting prodbabilities, Instead the symdol n, will be
used. Thus, the discrete—time limiting probability equation becomes

[%gsttgs eee 1 = [ngomy, oo 1 [P, (4.61)
where [P] is the one-step tramsition matrix.

The state—transition-probability diagram for the G/i/l model is

depicted in Figure 4.10. Note that a tramsitiom from state i to j where

Figure 4,10 State-Transition-Probability Diagram for the G/M/1 System.
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j>i+1 is an impossible situation since only ome arrival cam occur ;:* ','."

during an 1ntgurtlvul period. On the other hand, up to i+l departures V. h

oan oocur during an interarrival period, therefore all transitions to Ec:

state j where 0{j{i+1 are possible. .
In order to determine the form of the one-step tranmsition matrix,

note that the following relationship exist between states l‘ﬂ and X, -

Xp41 = X5 +1 - B, (4.62) =
where B denotes the number of departures between the nth and (n+l)th .*:::f-

arrival, Thus, the form of the one-step tramsitiom matrix is KON

1-b, by 0 0 o s

1- 5 by by bo 0 0 ;.-.:ﬂ:
1)) Ry

(4.63) R

where b, = P(n services during an interarrival period]. Recall that the ~rw

elemonts of the one—step tramsition matrix are PU' and note that

e,
. l.','_'
2, -

. ‘.'/./'

p=i+l1-j. Also note that the case j=0 is treated separately because, if

j=0, it is not sufficient to say that i+1-j customers were served
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during an interarrival period. That is, they could have been served in
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In order to calculate b, recsll that if the servioce process is é-.:
| -4
Markoviaa, the servioce time is exponentinlly distributed. Hence, as
) 200
loag as there are customers to bs served, the aumber of services ia any ;y;
PRy
length of time t is a Poisson random variable with mean pt. Thus, if ’:“k
’
A(t) is the PDF of the interarrival times, thes by cosditiosing om the )
AN
time between sucoessive arrivals: .':}.':'}
b
..‘-..\
- oHt(yue)? o
ba -J’ — A 0¢aci+l . (4.65) A
’ s
Hence, in component form the limiting probability equation becomes: :-.:-.
N
® :":*
ng = 2 Tx+n~1 ®a K1, (4.66) _
=0 :::;.r
: :.*"i
: or -"-:
® o ¢ BE(,t)2 ‘iﬁ
g = } Tx+n-1 J' ——— dA(t) B (4.67) .
s a! iy
b Nty
RYAS
SAOA
The o equation has not been included since it contains no new :j:
\ information, it is redundant. The value x, can be determined from the ":':’:
'.'.\
g fact that the limiting probabilities must sum to one, '-"
» S
I Unfortunately, there is no ecasy way to solve this last equation, :Af':
)
: however, it has been proven that if u/A ( 1 (the necessary condition R
E for the limiting probabilities to exist), then the form of the solutionm g ‘-':::
' is 'f‘_-:'f,-:
ny = opk, (4.68) -
: ':fl'.'d-
. where p = a number between 0 and 1, :~.$-."
- e
'. and ¢ = a constant vhich will be determined :-:"': )
. gt
|
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[TAKA62). Substituting this into the last equation leads te :

o o Ft(ye)"

opf = 2 opltel I - dA(t) ©1
=0 0

C) - ("t)‘

- opk-1 I oKt 2 ——  dA(t)
0 =0

= opk-1 I o Bt (1-B) 45(ey | (4.69)
0

Henoeo,
g = I (1Bt 4400y . (4.70)

0

Observe that this last equation is just the Laplace tramsform of a(t)
evaluated at u(1-p). That is
B = a%s) - o’ (u-up). (4.71)
s=u(1-p)
The exact value of § usually cam oaly be determined by numerical

analysis (such as Newtoa's method).

The constant ¢ can be determined from
[ _J
2 n -1, (4.72)
k=0

which implies
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. } pk = 1, (4.73)
k=0
or
c= (1-9). (4.74)
Nence,
n = p* a-p),
where

g = u.(n-ux). (4.75)

It is importaat to emphasize that LY is nsot the steady-state
probadility of k cestomers is the system, It is probability that an
arriviag oustomer fimds k customers ias the system. Nowv, if an arriving
castomer find k cusstomer in the system, it follows that his expected
response time is (k+1)/p (this is truwe regardless of how much service
the curreat cusstomer has slready roeceived since the service
distribution is Markoviam &sd thes memoryless), Hence, the mean
response time can be deotermined by conditioning on the number in the

systes vhea a customer arrives. That is

R = 2 E(time is system | arrival sees k] Dk(l-ﬂ)
k=0

o kel
- }— pE(1-8)
x=0 "

1

"(1_’)' (4.76)

where the last step follows from the identity
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= x
k .
20 (1-x)

The mean values of the other performance parameters easily follow:

R (4.78)
'q =R - % - Il(:"ﬁ) ’ (4.79)
Ly = W = s (4.80)
; 4.2.1 Comments on the G/M/m Queueing Model
é; The G/M/m queueing model represents the contention for m identical
P"; sovers that operate independently and in parallel under the sssumption
E that the interarrival times have an exponential distribution, Similar
‘l: to the G/M/1 system if this system is observed at the arrival instants
then it appears to be a Markov chain, Hence it is possible to calculate
1 the probability that an arriving customer finds k customexs in the
) system, However, no one has been able to derive explicit expressions
N

for any performamnce parameter. The details of the analysis are
, significantly more complicated than those for the G/M/1 system and will
’ not be given here, The interested reader is referred to Gross and

Kleinrock [GROS74] [KLEI75].

4.3 C 0. ntion o —-Mazkoy Pro ner
Iime Process

It should be obvious that a Markov process is also a semi-Narkov

f
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process. Therefore, if relatioaships could be developed that relate the Mo
solution of s semi-Markov process to that of its geseral time process, ¥¢$4
N
thea the M/N/1, M/G/1, and G/MN/1 systems could all be amalyzed as senmi- .gﬁﬂ
.u.,"'.
Markov processes., Iandeed such relstiomskhips have been developed 'bE
[FABB61] [CINL69) [CINL735]. Bovever, each case must be treated as s ;Q:ﬁ
LA
hih
separate problem, The development of the relatioaships depends upon 'E
)
2000
renewal theory, and requires far too much background materiasl to be ol
presented here. The interested reader is referred to the references by ‘;ﬂ
oo
Cinlar, vho developed much of the theory. The analysis is by no means :"{f_ )
A
WY
simple. The suthor speads aa eatire chapter (chapter 10) developing the S&_?
relationships for the M/G/1 asad G/N/1 osses [CINL7S]. The primary gf9§
&
results are that the solutiom of the semi-Narkov process for the N/G/1 } Myl
AN
\
case is the same ss the goenmeral time solution, wheress the general time oy
solution for the G/M/1 case is -~
o s
T
(~ A *:$5-
1 - - k=0 Y -" :
g ;s:g
Pk = < g .,'
A k-1 Ql‘ )
= pF1(1-p) K1, (4.81) PR
] \_ﬂ ﬁﬁ\*.
“ l\.l )
A
It is somevhat iromic that the proof for the M/G/1 case is considerably -
- ¢
(YA
more complicated thaa that for the G/M/1 case. Zﬁz:.
o

Y
N

4.4 Comments on the G/G/1 Queseinz Nodel

The G/G/1 queneing model represents coatentioa for a single server

1]
'..l-“ .,"1
K

under the conditioas that both the interarrival times and the service

h g ’r}‘r.'\.“v “r "y
s
4
) -,

L/

‘ times have general distributions., Clearly, this case includes the

9‘ ‘-.\'-*'h

-
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M/M/1, M/G/1, snd G/MN/1 cases. Therefore, if a solution could be
obtained in tir-o of the system parameters it wvould be valid for the
other cases, Unfortunately no one has derived such solution.

The diffioulty in analyzing the model stems from the fact that
neither the arrival nor service process is memoryless. Hence, it is not
possible to define a Markov or semi-Narkov process where the state of
the system represents the number of customer. However, it is possible
to define a semi-Markov process where the state represents the amount
of unfinished work in the system., The embedded process is obtained by
looking at the system only at customer arrival instants. Thus, the
unfinished work at thess points is the same as the customers response
time, R,

The details of the snalysis will not be covered here, but some
comments on the analysis and form of the solution will Ve discussed.
The semi-Markov process is a discrete-time continuous—-state process.
Note that this is our first encounter with a process in which the state
space is continuous. The key point here is that in order to obtain a
solution for the wvaiting time, complex variable theory and spectral
factoring must be used. The procedure involves a certain amount of
trial and error. Unfortunmately, the spectral factoring procedure
destroys all traces of the system parameters., That is, although it may
be possible to find a solution, it will not be in terms of any of the
system parameters, However, sssuming that a solution can be found, the
expected values of the other performance parameters can be determined

from the waiting time,
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Although it is not yet possible to find an expression, in terms of
the system parameter, it is possible to derive an expression for the

upper bound of L and R. The results are:

2
A" (Var(n]+Var(S]) |
Lip~ 2(1-p)

(4.82)

A(Vazn]l+Vaz(8])
2(1-p)

R S E[S] + . (4.83)

where

n = random variable representing the interarrival time,

[LAVES3].

4.4.1 Comments on the G/G/m Queueing Systen

All of the comments on the G/G/1 system carry over to the G/G/m
case, However, the likelihood of solving the integral equation by
special factoring is considerable less than the G/G/1 case (usually

impossible [KLEI76]). Bounds on L and R have been derived [LAVES3]:

lev.:[nl+(Vu:[sl/-)l,

2(1-p) (4.84)

L {m +

AlVaz(n]+(Var(S]/m)] |

2 (1) (4.85)

W  E[S] +
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4.5 Comoluding Remazks

The primary purpose of this chapter was to develop the elementary
results for the M/G/1 and G/M/1 systems. It is not possible to cover
all of the details of these two systems in a single chapter, Indeed
entire books have been devoted to covering these two systems. Perhaps
the most comprehensive reference is 'The Single Server Queue’ by Cohen

[COHE69]). This reference contains over 600 pages!
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CHAPTER $ Eg,."

.INTI(IWCTION TO MARKOVIAN QUEUEING NEIVORKS _

5.1 Iatgod a to uein s :_‘

A queueing network is a collection of one or more service centers, "

Oaly networks of Markovian queues will be considered in this chapter. A :::

Mazkovian network is one in which all arrivals from outside the metwork :::

are Poisson processes and all service times are exponentially :5

distributed. The purpose of a queuveing network is to predict the h-;;\:

performance of a physical system in which there is contention for ‘:'_;:'.:‘

%

resources., The resources are represented by the servers im the mnetwork, A .

o

Queueing networks are usually classified as being either open or closed ::::'EEEE

An open network in depicted in Figure 5.1. A customer enters one of the ':‘:‘-;,.E:

service centers from outside the s,stem, waits for a server to become h:

free, receives service, and departs the service center, U]':on departing ::S,_:

from the service center the customer, according to fixed routing :_\;\;\

probabilities, either enters amother service center, reemters the same .
service center or exits the system. Open networks are used to model "",;-

systems in which the number of customers competing for resources can '.‘.

be potentially unlimited. A closed queueing network is shown in Figure *.

5.2. In a closed queneing network the number of customers in the system :S:s
[ is always constant, After a customer completes service at a service S;:'\
coenter, he either enters another secvice center or reonters the same ¢-
i service center, Closed networks are used to model systems in which a :‘,: a:
t fixed number of customers comtend for the resources, .::::5
] Ay
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5.2 Buske's Theozen N
Before surging into queneing networks first coasider the simple two
node (service center) network of Figure 5.3. Assume that both service
PAY
'-":}!‘.
‘>
:I-';‘
Cg
—-0O——O—
s - Sala
R
o
Figure 5.3 A Simple Tandem Queneing Network. 0
centers contain s single server aad that the service times are Z&ﬁ%
Py
exponentislly distridsted with mess 1/p; st node ome sad 1/p, st node ;::{,
s J‘NF
e

two. Also assume that the arrival process to node ome is Poisson with

rate A. Thus the first node is exactly an M/M/1 queme, Im order to

S

analyze the second mode the arrival process feeding it must bde

o
calculated. Clearly, this is the departure process of node one. Let 9&.
FrE
D(t) denote the PDF of the imterdeparture time between customers ;bﬁ}p
<
leaving node one, When s customer departs node one, either a second ﬁ:f '
o f\
o
customer immediately starts service or the queme is empty. If the queue o
is empty, thes the time wuatil the next customer departs is the sum of Py
"
two independent random variables: the first being the time until a new gi”
N
*
castomer arrives and the second his service time. The denmsity function .
of the sum of two independent random variables is the convolution of Q:: :
:\ .“\"\
the individual density fumctions (KLEI75]. Therefore, it is easier to gﬁ;&
)
work with the density function and Laplace transforms and them convert T
O
&0
104 e
e
.;\':;-.
AONN
;:j::

e e R AL T8 P A AT P S PSP A DA
\ m N \%‘- Nl
‘C&Mﬁ"‘ \G.Mﬂ't:‘ﬁs AN AN A W AT R



back. Let 4(t) denote the density fumctioa of the interdeparture
process at service ceater one and d.(l) its Laplace transfora, The

conditional Laplace transform demsities are :

* N W (5.1)
4" (8)Inode ome empty 3 35

and
a*(S)Inode one monempty = -8-2; (5.2)

where the subscripts have been suppressed since all variables pertain
to service center ome. The probability that an M/M/1 queue is nonempty
was calculated earlier and is A/u, Therefore the unconditiomal Laplace

transform density is

¢ - [1-A1[ A & A 1] - A (5.3)
4:(8) [1 ..] [Sﬂ. s+u] * [.. S+p s+) ’
snd
a(t) = re~Mt, (5.4)

Hence, the intsrdeparture PDF is
D(t) = 1 - e*t, (5.5)
) cess of an M/M ocess is exactly the same as
the srrival process! This startling result is usually referred to as
Burke’s theorem [BURKS6]). He also proved that the same was true for an
M/M/m queune,

In view of Burke’s theorem, service center two is also an M/NM/1
quene with mean arrival rate A and can be analyzed independently of
node one, It follows that the joint probability of node one containing
k1 customers and node two containing kz customers is

P(ky,ky) = Py(ky) Py(k,)
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- [o./ul)kl P(0)] [(x/u,>k’ P,(0)]

k
= o™ -0/ ™2 -0/e1. (5.6)

Shortly after Burke published his work Jackson proved that more
general networks can be analyzed in & similar manner [JACKS7]. The type
of networks he studied is depicted in Figure 5.1 . It consists of N
interconnected nodes, Node i in the network contains m, identical
servers. The service time of a customer visiting node 1 is
exponentially distributed with mean 1/)1‘. A customer after receiving
service at node i is routed to node j according to probability Tyje or
he reentors node i according to probability Ly OF he exits the
network according to probability r,,. In addition to receiving
customers from other nodes, node i may receives customers from a
Poisson process outside the network at mean rate A,.

Let v, denote the total mean arrival rate at node i (arrivals from
outside the network plus those from other nodes inside the network).
Since the expected value of the sum of several random varisbles is the
sum of the individual expected values (irrespective of dependencies

involved), it follows that at steady-state

Yy = A + 3 Yj Tji (5.7)
i=1

where Ty T4 is the mean rate from node j to i, Hence a set of N

linear, simultaneons equations can be written from which the mean
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arrival rate at each node can be determined. It also follows that the
mean throughput, T; = 7;. B
Jackson proved for this class of networks that the joint . ,',c:
probability distribution is o
P(ky,Xp,...,ky) = Py(ky) Py(kp) *°° Py(ky) (5.8) p '

where g :E:‘Q'

k ]
Py(0) (vy/ug) L/ kg (k; = 0,1,....m,) v

f' .
Py(ky) =< A

k
Pi(O) (71/”1) i / (.11 -1k".‘1) (ki = -i'.i+1"°') . -‘;\;\ »
- ;Z'v'* !

Note that pi(ki) is the same equation that was derived earlier for an
M/M/a quene except 74 has replaced ).1. The result is known as Jackson's -

o
product form theorem. Y

The proof closely parallels that of the birth snd death model in

¢
]

s
S

chapter three. In fact a netwvork of Markovian queunes is a

-r:
’
ant

-
-
-
oA
o
.
"

AV

[g
f'f‘u

multidimensional birth and death model. Recall that for the omne-

'L

S

dimensional birth and death model the probability of zero births in an
infinitesimal interval h is 1-Ah+o(h), It follows that for & network of

N nodes the probability of zero births in h is

[1-1111"’0(11)] ll-lzh"o(h)] se e [l-lNh'.'o(h)] - 1 - g lih + o(h) . (5.9)
i=1

Similarly, the probability of zero deaths at node i is

1- (k) b+ o), (5.10)
where
BN
AT
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k, u for k., (m
i Fi =71
"1(k1) = {:

PO
By = mean sorvice rate at quene i when ki-l e
kl = the number of customers at service ceater 1§
m = the number of servers at center i.
)
The probability of zero deaths in the networks is
e
1~ )upi(ky) b + o(h) , (5.11) A
) 1.1 (2%
-
A,
and the joint probability of zero births and zero deaths is f:f

2%
' 1- g Ay b - g ni(ky) h + o(h) . (5.12) t'&;
' =1 i=1 22
By considering 2ll the ways in which s network canm resch state
(kl,kz..u.kN) it turns out that
P(kl..o..k")(t+h) = [1 - g li h -~ g ”i(ki) h ] P(klo---nkN)(t)
. i=l i=1 &
) + g Li h P(klnooo.ki-lyo.t'kN)(t) :.‘
i=1 .
<

+ g “i(k‘+l) h tio p(klpoo-pki*l.au-.k")(t)
i=1

+3 g uj(kj"'l—Bij) h rji P(klo-aa:kj'.‘llco-oki’l;-oopkN)(t)
i=1 j=1

+ o(h) , (5.13)
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where

{0 for idj
1 for i=j .

The first term on the right has already been explained., The second term
oo the right is the probability that the network is in state
(Xys000ky=1,..0,ky), and an arrival occurs at node i in time b, State
(k1""'ki-1"“'kN) indicates that service center i has one less
customer thanm state (k;,....k;,....ky). The third term is the
probability of the network being in state (kl""'kiﬂ'""ku)' and a
departure occurs at service cemter i, and the departing customer exits
the network, The fourth term is the probability that the network is in
state “1:----*3*10--"*1'1""'“!!)' and a departure occurs st service
center j, snd the departing ocustomer goes to service cemter i. The 6“
terms allow for the possibility that a departing customer reenters the
same sorvice coenter,

Following the usual procedure of subtracting P(kI.....kN)(t) from
both sides, dividing by h and taking the limit as h approaches zero,
one obtains a set of differential equations. A set of steady-state
equations is then obtained by taking the limit as t approaches

infinity. The resulting steady—state equations are :

[ S Ai + S "i(k")] P(klaoo-pkN) - g xi P(kloooocki-loooonkN)
i=] i=1 i=1

* g mi(kg+l) r40 P(ky, .00, ky4l,...,kN)
i=1

N
P

* /
o 2,
]

" l. 'l
LY

'.f L
:"
5




T

#s llj(kj+1'5ij) ry4 P(kl.....kj*’l.....ki-l.....ku)'
i=1 j=1
(5.14)

Jackson did not derive the solution from this set of equations as
was done ia the ome-dimensional case, He assumed the solution and then
verified that his asssumption was correct by substituting it into these
equations. The following relations are oasily seen from the defining

equation for P(kl.kz."..kn) :

P(klaocogki-lpoccnkN) "i(ki)
= (5.15)
P(klpocolkinou.lkﬂ) Y4
P(k 'oc'.k +1'..¢l ) Y
po e W, _n (5.16)
P(klonoonkioooo'kN) "i(k1+1)
P(k no--pk "lngonpk -lpottlk ) Y [} (k )
1 : . J_d . (sam
P(klpu-o.kj‘otc.ki.ono.kN) 71 'lj(kj*l-a‘j)

Dividing both sides of the steady-state equation by P(k,,....ky)

results in :

S Aq + g ni(ky) = S Ay ny(ky) /vy + g Yi Tio

i=1 i=} i=1 i=1
+ S g vy wilky) r44 /vy . (5.18)
§=1 =1

Substituting Ajy = yv; ¢+ S Yy T4 into the first summation on the right
i=1
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and adding the result to the double summation yields:

g Aj + g pi(kj) = g Yi Tio + S pi(ky) .

i=1 i=1 i=]1 i=1

(5.19)

Finally, substituting rjg =1 - g rjj asnd yy = Ay + g Yj rji iato
i=1 i=1

the 1last oquation results in both sides becoming identical, and the
proof is completed.

Jackson’s product form theorem states that onmce the mean arrival
rates have been determined, each service center canm be amalyzed as an
independent M/M/m queue, As in the case of the N/M/m queue the service
discipline or order in which customers are served is unimportant as
long as it is work-conservative. The results of Jackson’ theorem can
best be illustrated by an example. Consider the problem of finding the

distribution of customers in the network in Figure 5.4, Assume that

2

20

Figure 5.4 An Open Queueing Network with Feedback,

both service centers have & single server. The following are the

steady-state equations for all states with two or fewer customers:
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A P(0,0) = £, o ny P(0,1)

(A+ng) P(1,0) = & P(0,0) + r5 3 py P(0,1) + 55 o my P(1,1)
(A+py) P(0,1) = u, P(1,0) + 3,0 M2 P(0,2)

(A+ng) P(2,0) = & P(1,0) + 5 5 By P(1,1) + 1 o P(2,1)
(A+pp) P(0,2) = py P(1,1) + 15 o uy P(0,3)

(A+py+1p)P(1,1) = A P(0,1) + py P(2,0) + r; 4 uy P(0,2)

+ rz.o llz P(1.2).

Notice that there are six equations and nine unknowns., No matter how
many and what set of equations are writtea out there will always be
more unkaowns than equations, Thus, there is no way to solve this set
of equations without some form of guessing.

According to Jackson's theorsm the solmtion is

k k
P(ky,ky) = (vp/u;) L PL(O) (vp/up) 2 Py(0) ,-
vhere y; and y, sre the mean arrival rates. The equations for y; and v,

are:
TP = Aty o,

=1 .

Solving these equations results ina Yy "V " x/:z.o. Vhich results in

kq1+k k k
P(ky,ky) = My ) 1 2 (1/py) 1 (1/my) % P(0,0) .
It is easy to verify that this satisfies the steady-stats equations,

and thus is the solution.

5.3.1 Open Networks with Feedback

Jackson’s product form theorem is not surprising for netwvorks
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without feedback., If Poisson processes sre joined or split the
resulting processes are Poisson., Using this fact and Burke’s theorem it
can easily be shown that for a netvork without feedback the arrival
process at node i is Poisson with mean rate Ve

roblem with feedback is ¢t it ca oved ¢t he

[LEMO77]). This fact can be illustrated best by an example. Again using

Figure 5.4 assume that customers arrive from outside the network from a
Poisson source at an rate of one customer per hour, and that the mean
sorvice times at both service centers is expomentially distributed with
a mean of 1 msec. Also, assume that the output from the second service
center is fed back to first with probability 1= 0.999. With this
extreme set of parameters the output of the first service center tends

to be in bursts, A typical output sequence is shown in Figure 5.5. The

i

EREEIEENE ] ,}‘F NN

Figure 5.5 A Non-Poisson Input Sequence.

input to the second service center does not have independent
increments, and therefore is not Poisson [ROSS80]. At present there is
no n on conjectu o w ackson’s theorem is valid for

netwo k.
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5.2.2 Locs] Balance

Although it was not necessary it turned out that steady-state
equations are not oaly balanced, but that :

ui(ki) P(kl..oo.k") = 11 P(kljll..ki-lpl--.kn)

+ S “j(kj+1.aij) P(kltoo..kj+1.o'o.ki-1...o.kN)j
J=1
and

g li P(klnccookN) = g ui(ki+1) tio P(kipooo.ki*loo.cpku) . (5021)
i=1 im=1

These equations are called local balance equations as opposed to the
steady—-state equations which are often referred to as global balance
equations, Local balance states that the rate of flow out of a network
state due to a customer departimg s queue is eoqual to the rate of flow
into the state due to s customer arriving at the queune, Clearly the sum
of the local balance equations are the global balance equations. Hence
the solution to the local balance equations satisfies the global
balance equations, Local balance was discovered by Whittle, and is also
referred to as independent balance [WHIT68] [WHIT69]. As an example of
local balance and its uvse, again consider the netvork in Figure 5.4 .
The following are local balance equations that correspond to the global
balance equations given earlier:

A P(0,0) = 23,0 M2 P(0,1)

A P(loo) = t2.o ﬂz P(lal)

By P(1,0) = A P(0,0) + 1'2.1 P(0,1)
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At e,
e
A P(O.].) = 32 0 llz P(Opz) .
» ~ ':;'
by P(0,1) = p; P(1,0) g‘: ;
UM
!
» P(2,0) = 1, o uy P(2,1) el
’ n
\"'\(A\
e
A P(0,2) = r; ¢ By P(0,3) ‘;vf-f,_
P(0,2) = P(1,1) .-
*2 "1 R
ALY,
N
#y P(1,1) = & P(0,1) + r; 4 ny P(0,2) },:..
=~ :
By P(1,1) = py P(2,0) . NN
There are 12 loocal balance equations and only nine unknowns, therefore :'.:\r '
,.\ () '
some of the equations are redundant, The following is a subset of the ."!'..".E
Y00
local balance equations: -
a:::f
A P(0,0) = 1 o By P(0,1) Run!
’ RS
ey, ;
AP(0,1) = 3,0 P2 P(0,2) ..:g(
’ .\_’\
My P(2,0) = A P(1,0) + £y 5 By P(1,1) NS
n:‘ ’\ 3
P(0,2) = p, P(1,1) RN
"2 1 NN
’ -q;.-o;
A P(1,1) = 1 ¢ By P(1,2) R
Qg gt
OO R
A P(0,2) = ; o uy P(0,3) . ;:5;:
Solving these equations in terms of P(0,0) results inm : '.,-:.*:.‘
_*.:_..j_-.
P(0,1) = (/x5 o) (1/uy) P(0,0) RS
‘..:1"‘.“
P(1,0) = (x/:z'o) (1/"1) P(0,0) ':sfﬁ\\_
R
SN0
ALY
SN

0 A A A P A R R A A P O
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P(1.1) = (A/53,0)2 (1/n)) (1/y) P(0,0)
P(2,0) = (A5 0)? (1/p,)2 P(0,0)

P(0,2) = (A\/1; )2 (1/ny)2 P(0,0)

P(2,1) = (A/zy o)} (1/8)2 (1/1) P(0,0)

P(1,2) = (/15 o)3 (1/my) (1/n5)2 P(0,0)

P(0.3) = (\/ry o)3 (1/ny)% P(0,0) .

The form of the solutioa is :

P(ky.ky) = (ry 00 T2 (/np™ (170)"2 Re0,0) .
Which agrees with the solutiom obtaimed earlier. This is the only known
example of a queveing network (with two or more service centers) being
solved by local balanmce,

It is impoxtsat to note that to show that local balance exist
Jackson’s theorem was used. It is also important to emphasize that
local balance is not necessary for global balance. That is although all
queueing networks discussed thus far have local balance others do not,
Local balance is an important tool that cam be used to help determine
if advanced queuneing networks have a product form solution, In other
words one can sssume local balance and if the looal balance equations
are consistent an snswer can be obtained. The answer can then be

verified and used to prove the assumption was true,

5.3.3 An Application of sn Open Queuejng Network

An example of an open queneing network model is shown in Figure
5.6 [FERR78]. The model represents a mainframe computer that consists

of an input/output processor (IOP), a ceatral processing unit (CPU), a
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Figure 5.6 An Open Queueing Network Nodel of a Computer.

>

T
g

’{,'
.‘

Paramoter name Symbol Value

Mean arrival rate A 0.7 jobs/s
Mean input service time 1/n4 500ms S
Mean uninterrupted CPU time llnz 30ms f‘

Nean drum service time 1/ng 20ms
Mean disk service time 1/u4 80ms
IOP to CPU probability 27 1.00
CPU to drum probability 23 0.75
CPU to disk probadbility 24 0.28
Drum to CPU probability £39 1
Disk to CPU probability T42 0
Disk to out probability T40 0
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Table 5.1 Parameter of the Model in Figure 5.6,
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drum processor, and s disk processor. Bach unit is assumed to comsist
of s single sexrver, and the service discipline is assumed to be FCFS.
Parametoers ﬂ;r the model are given in table 5.1. The input process to
the computer is assumed to be Poisson. All jobs are assumed to be
qt.tlatically identical, and all service times are assumed to be
exponentially distributed. The service time at the IOP accounts for the
time to input and load a job into primary memory., After the job has
been loaded it waits its turnm to be processed by the CPU., The mean
service time at the CPU represents the mean time before the job needs a
drums or disk operation. Because these operations are slow compared to
the speed of the CPU, the CPU releases the job to the drum or disk
processor and starts on another one. The drum and 4isk service times
represent typical demands made by jobs. It is assumed that all jobs
that require drum operations will also require more CPU time before
completion, therefore they are routed back to the CPU, On the other
hand it is assumed that only 90 percent of the jobs that require disk
service will require more CPU time. Two simplications have been made
that violate a real system. First the model does mot take im to account
contention for memory, and second a job ususlly terminates at the IOP
so that its output can reach the external vorld. These simplications
are necessary in order to get an answer,

Since there is only one entry point and one exit point the mean
throughput rate must equal the mean arrival rate. This is not, however
the case for the mean response or turnaround time whose calculation

will be one of the objectives, Other objectives will be to determine
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all mean queue lengths, the utilization at each unit and the mazimum », ',%
ANAX A

input te before saturation, T ek
put rate be! &:-;\:‘.‘.
The equations that describe the total mean arrival rate at each unit 5?:: O]
oY,
are : R
7y = A= 0.7 I0P 2
AN
T2= 71 %73+ 0.9, CPU RO
Y3 = 0.75 v, Drum :k;:;.

AYAN
74 = 0.25 v, Disk . e
i

i
A
Solving these equations results in : "‘-;"
55

71 = A = 0.7 B

1 0% 400, = 28 -?-::: ]
ATt
y3 = 300 = 21 NN
.._-’&::\
74 = 100 = 7 , srat e
LS S g
Each service unit can now be analyzed independent of the others. ‘\_‘Z‘{f}--
NN
The utilization at each uanit is : \_"'S_

|‘_."‘.
AU
py = 11/8y = (0.7) (500 10°3) = 0.35  IoP NP

- NS
Py = To/up = (28) (30 1073) = o0.84  CPU A

AL,
= = -3 = :.'.:"::
P3 13/“3 (21) (20 10 °) 0.42 Drum ;:-:}::\
. 1.:

S

Pe = Yo/ug = (1) (80 1073) = 0.56  Disk .

The mean queuve lengths at each unit are :

P

= 0.54 Iop

L1-

P2 RCAAY
= 5,28 CPU -‘-“-_;Z:
1-py N
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e At g R0y B4 UL 470 g gt gt AV N gV o%. ad. oV gt Al ab. 4V, At aly-

P3
= = 0.72 Drum
La 1‘93
P4
L4 = = 1.27 Disk .
1-94

The mean number of jobs in the network is therefore :
L-L1+L2+L3+L4-7.18'
The mean response time can now be calculated by applying Little’'s Law

to the Network, i.e.

L 7.78
R= - " <3 = 11,1 seconds/job .,

The maximum input rate can be determined from finding the minimum
value of A that causes ome of the umit to reach 100 percent
utilization, In terms of the parameter A the utilizations are :

Py = 0.5 A
Py = 1.2 2
Py = 0.6 A
pg = 0.8 A
Thus, the CPU will saturate first., Setting Py equal to ome and solving

for A results in

Ayax = 1/1.2 = 0.833 jobs/s .
If the service discipline at the CPU is changed to processor sharing,
then all of the results are the same. Although true this statement is
somewhat misleading., The problem is with response time, The means are

the same, but the variance distributions are different.
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5.4 tes Dependent on the Number of Customers in the Network

Six years after his first paper Jackson extended the class of
queueing not;orks that could be solved in a paper that is considered
the classic of queneing networks [JACK63]. Again he considered only
networks in which the arrival processes from outside the system were
Poisson and all service times were oexponentially distributed. However,
he sllowed the mean service time at each server ceater to vary almost
arbitrarily with the number of customer im the service center, and he
sllowed the mean arrival rate to vary according to the number of
customers in the system. In fact the arrival rate could be varied such
that if the number of customers fell below some lower limit then a new
customer was immodiately injected into the system, Also the arrival
rate could be set such that if the number of customers in the systen
reached some upper limit then new customers were not sllowed until the
number fell below the limit, By setting the upper and lower limits at
the same value he considered closed queuveing networks, The following is
s quote that appeared near the end of the paper 'The discovery of these
theorems resulted from making a sequence of guesses concerning more and
more general jobshop~like queueing systems, and proving successively
more general versions of the theorem’.

It is easior to handle the arrival process if it is assumed that
all arrivals emanate from & single Poisson source such that new
customers are rounted to different service center according to fixed
routing probabilities, Recall that if a Poisson source is split then

the resulting processes are also Poisson, Therefore, if the arrival
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process is not a function of the number of customers in the system,
then it is equivalent to the multiple Poisson sources in Jackson’s
first paper. The mean arrival rate at each queue can not be determined
before hand if the arrival rate varies according to the number of
customers in the system., However, the mean number of visits & customer
makes to a service center can be determined, Let e¢; represent the mean

number of times a customer visits service center i, Then

6i™ roi + g Oj tji (5.22)
i=1

where 04 is the routing probability that & new customer emanating from
the Poisson source visits queue i first,

Jackson proves in his paper that for these more general networks
of Markovian queues that the joint probability distribution also
satisfies product form. More precisely,

A(S(E)) £5(ky) £5(ky) **° fyy(ky)

P(kilo..lkN) = G (5.23)
where
kj
a=]
k-1
A(S(K)) = ﬂo Als)
'-
N
G = M) fi(ki)]
all feasible
states

l-k1+k2+...*kN
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Bi(s) = mean service rate at queue i when it contain ‘s’ customers :‘_:::f
and Cenmae
. }.‘;s:\
A(a) = mean srrival rate when the netwvork contains ’'a’ customer. :-:::«.":
AT
. "..{ "
"o
The role of G is that of a normalizing constant to insure that the Nl
probabilities sum to one. Of course there is a solution only if G f;-’j:{:
converges to a positive number less than infinity. _‘.:"
RN
As an example of the product form solution consider a two service LY
center netwvork with the following parameters : '::?' :
'i‘ )
. G
Aa) = @/ (a+1)T  where w)0 and x)0 :‘;::,. y
ot )
ny(a) = b o7 where b0 and y)0 N
o N
Hy(s) = ¢ af where ¢>0 and z)0 N
101 = rlz - tzo = 1 the other rij =0, S&E&?»
Jackson’'s theorem states that the joint probability distridbution for R
this network is : ‘ J-::.r
"%
x k, wd
(/5) 1 (/¢) oS
P(ky. k) = ‘ TN

6(K) ((ky+kp) DT (X 1)T (k)%

d

f\

The following is s proof of Jackson’s theorem., By comnsidering all

IR |
S
s

ven s

the ways in which state (kl.kz.....kN) can be reached the set of

NN

% " %

steady—state equations are :

[x(x) + S “(ki)] P(K ,...,k ) = 5::‘.’-

i=1 R

el
i)

g l(‘-l) tOi. P(k]_no-onki-luo--kN)
i=1

a
a9

A
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+ S “1(t1+1) rio P(kl..c-nki*lnocoaku) e
i=1 ‘

+ S g “j(kj*l-aij) rji P(kl"'"kj*l""'ki-l""kN)' LX)
=1 j=1 -

4 (5.24) 2 () \
] ;\.

L)
Now the following relations are easily seen from the defiming equation ]

i

for P(kl'.."kN) H

el
Y
Wy

4

P(klnoco,ki-lpooopkn) "i(ki)

P(KgsonorKqoerosky) 85 ME-1) (5.25)
1 i N i

{’l“
)

P AR ¥ o 1
~
“

%

<

P(ki'.".k1+1’."'kN) .1 L(K)
I T - S E D) (5.26)

[ 4
LY

w d
AN

>
"&\'.'.

s
>
A

P(klonc-pkj+lpcoo.ki"lpoc-,k") - .j ui(ki) (s 27) _»“'.:;:-
z P(klnoco'kjlotclkilﬂo'lkN) ey “j(kj+1-6ij) ’ ) -.:J::',

Dividing both sides of the steady-state equation by P(kl....kN) yields

A(K) + S ni(ky) = g (nj(ky) zo1 / €3] + g A(K) ¢4 rjp AR
i=1 i=1 i=1 o

i ol b agh SR 4

"'3 Sui(ki) £yi oy / % . (5.28)
i=1 j=1

B

Substituting rpy = o3 - S ey rji into the first summation on the AN
.’-1 o

- & w e

right and canceling gives :

’-fl
2
b 4
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A(K) = g A(K) e r40 . (5.29)
i=1

Substituting definitions of °; and Ti0 shows that the assumed solution
balances the steady-state equations,
Several special cases are of sufficiemt interest to discuss them

separately,

5.4.1 The Constant Arrival Rate Case
If the arrival rate does not depend on the number of cestomers,
then for all ’a’, A(a) = A = constant and A(S(K)) = AK"1, For this case

the steady—state probabilities are

K-
AL g (k) £5(k) Ll ty(RY)

P(kl.oo.pkN) = G (5030)

where f,(k;), K, and G are the same as bofore. Multiplying the
numerator and denominator by A and letting G absord the A in the
denominator results in
k k k
)] N2 £ L N (k]

P(kllool.k") = G * (5.31)

k
Let '1(kl) = ) i fi(ki). That 15.

k
i
8;(k;) = I]o Aoeg/ug(a) . (5.32)

In terms of |1(k1) the steady-state probabilities are

Pk..... = ¢ .
(Rgoouerky) = (5.33)
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o & ’ 1d L [} [ I.
P
0\.0
};’.:..;.
Since the network is open all states are feasible aad v%
) - ® .‘. ‘.li
G -2 } } [ 81(ky) g2(k2) ... .N(h,.)] ot
k4=0 k,=0 ky=0 . 'ﬁ’:.'
Y 0!
-« [ _J [ _J 3
- [ uan][Inan] ... [ 3 mew]. (534 B
k=0 =0 0 NS,
1 K ky= ;:??
N2
Notice that G factors into terms where csch term iavolves parameters ;{Q;
for a single service center, It follows that P(kl.....tn) factors into "n
Y
terms that involve s single service center. That is <:q’
R
i\{t
P(an-o.kﬂ) bl Pl(kl) Pz(kz) eeve PN(kN)
E')ir
where - A,
Py(ky) = sy(kg) / ) palky) . (5.35) R
k;=0 :.:_F-::
Thus, the distribution of ocustomers at the service cemters are g
independent, and the distribution at each center is the same ss for a "".:
R
--:u"'
one-service—-center queueing system where customers arrive from a ey
i Poisson process with mean rate A TG and the service completion process N
b .._
is identical to that of service center i, Also, since *, is the mean .j\:‘»;
number of times s ocustomer visits service center i, it follows that for '\ °
this case A o, is indeed the mean arrival rate of customers to center -f.j-;..
i. Furthermore if cemter i contains m; servers and .:'.::;’_.'.j-
I
W
k! 'li for k1$-1 . -
ﬂ‘(ki) = \':\:,\
) o
then the results are of course the same as inm sectiom 5.2, ::::"
25N
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5.4.2 Closed Networks an
A closed network is one in which the number of customers in the ;:.:‘:::
netvork remains coastant. Jackson considered closed networks as a 3:::::':
special case of networks in which the arrival rate varies accordinmg to ;
the number of customers in the network. To keep the number of customers "t‘
at some constant value K, he set A(k) = 0 for kXK and A(K-1)==, Thus if EEEEE
the number of customers falls below K a new customer is immediately jE.; by,
injected into the network, and if the number of customers is K, nevw %%E
customers camnot enter the network, This is equivalent to s metwork in :'g:}.\,.
which the same customers circulate eternmally, :\ ','
Unaware of Jackson’s work Gorden and Newell published a paper on :E:',q_
closed notworks. It appeared four years later in the same periodical in E‘E::;

"{?’ Ld
2%

which Jackson’'s paper appeared [GORDG67]. They acknowledged later that

e

their formulae for steady—state probabilities could be obtained by '._{;)j
.\:,'l..‘t
specializing the parameters of Jackson’s more general model. However, ‘-::;

«

)ﬁ
e ]
.

A)’{ Py
1055
)

researchers at the time wvere unaware of this and treated Gordon and

Newell’s simplified notation and results as independent work, Even T
‘\‘\:"\-

today credit is more often given to Gordon and Newell. ::‘_:":
oo

The approach used here is similar to that used by Jackson, For a ;‘;L';

closed network A(S(K)) is assigned the value of ome, and since r;,

equals zero for all i,

i=1

By oconsidering sll the ways in which state (k;,k;,...,ky) csn be

reached the steady-state equation is
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e e T

Bt o

ﬂi(ki) P(kl.oo.pku) =
i=1 ’

g "j(kj+1-sij) tji p(kl,..g.kj+10ono.k1-1aoco'kN).

i=1 j=1
(5.38)
From the defining equation
P(kl.'..'kj+1'....ki-1'..'.kN) °j “i(ki)
- . (5.39)
P(kllo.c.kjycncakipoo-tkn) ‘i 'lj(kj"’l-sij)
Dividing both sides by P(k;,...,ky) results im
gm(kﬂ -g gu,(m ry1 05 / ey . (5.40)
i=]1 i=1 j=1
Using the definition of e; or more precisely the fact that
g [rji ey / ¢4l =1 (5.41)

=1
shows the equation is balanced. Hence the solution satisfies the

steady—state equations.

Again not only are the steady-state equations balanced, dut it

turas out that

ui(ki) P(kloo-onkN) =

g 'lj(kj+1-sij) tji p(kl.coo.kj+1.ooc.ki-lpooolkN) .
J=1
(5.42)

The implication is that local balance also spplies to closed networks,
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Notice that if all of the e¢'s are multiplied by a constant, then
the set of N o'qnati.ons defining them is still satisfied. Hence, for a
closed network there are only N-1 independent equations. The solution
is to assign one of the e’s an arbitrary positive value. Only their
ratios sppeared in the proof. The e’s in a closed network are often
referred to as relative throughputs,

Although from a theoretical poiat of view any positive value can
be assigned to one of the e’s. The value selected does affect the
normalizing constant, G, and can cause numerical problems such as
overflow or underflow, Compensating for the fact that the magnitudes
are not know is only one of the purposes of the normalizing constant.
It would still be required even if the magnitudes were known before
hand, The normalizing constant, G, is virtuslly a function of every
parameter in the network,

It is remarkable that joint probability distribution of s closed
network of queunes with exponentisl servers has a product form solution,
That is, the form of the solution is the product of N gqueues with
Poisson arrivals and exponential servers, divided by a normalizing
constant., What makes this so remarkable is that none of the arrival
processes are Poisson at any service center. Again no one has an
explanation of why this is so.

Even though the solution has s product form the distributions at
the individual service centers are not independent since their sum must
always equal the same value. This is the primary reason that a closed

form solution for the normalizing constant can not be obtained.
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Determining the normalizing comstant by the odbviouns way of fiamding all “' 3
of the uanormalized probabilities can be and usually is s difficult Fz ‘t,:;
probles. By considering the number of possible ways that customers can '*s. .:;
be distributed in s closed netvork the number of states cam be -n.‘fsi'-:“
determined. This problem is egquivaleat to that of finding the number of .\'j}t::
perautations of N-1+4K objects of which N-1 are the same and K are the g&s’
same. Thus for a closed network with N service centers and K customers 2.:;;:;
the number of states is E;.isi

pon

S EEV (N'fg) - 1). can e

For example for a network with 8 ¢ight service centers and 20 customer iﬂ '.
there are 888,030 states. Fortunately other techniques to determinme the :E;L'
normalizing constant exist. One of these will be discussed in detail in E.:::-:f
. A

Chapter 7. N
5.4.3 An Avolioation of Closed Queusias Netwocks =
As an example of a2 closed netwvork consider the model in Figure n/:».;\f

$.7. Again assume that each service center has a single server, and ?E%
that all jobs are statistically identical, and that all service times 'E“
are exponentially distributed. The parameters for the network are given "‘f-.i‘
in table 5.2, A job making a CPU to CPU transition is regarded s :\..
having left the system and having been immediately replaced by another EE;:;
job., Thus, the flow along the CPU to CPU path represents the system ::f:":‘
throughput. The objective is to determine the mean number of customers E;'*E:
at each service center, the utilization of each service coenter, the ::;;
mean throughput, and mean response or turnaround time of a job, To make :\E:E
AN

N

o2

o, " "ol ’--; 'l ‘¢"q'.\’\..\‘\'.‘.."0ﬂ:‘;*-- N AT N
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Figure 5.7 Closed Network Central Server MNodel. :'Z‘i. ‘

Parameter name Symbol Value PR

Mean uninterrupted CPU time 1/pq 10ms .
Nean drum service time 1/py 25ms ':.‘.
Mean disk service time 1/34 100ms e
CPU to CPU probability 14 0.1 e
CPU to drum prodabdbility £42 0. Yad
CPU to disk probability £33 11).

1

.{ﬁ
3
iy

Drem to CPU probability 21
Disk to CPU probability £31

A

X
ot

[ XX
»
4

%

Table 5.2 Parameters for Figure 5.7.
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)

O

L% ¢
the problem manageable assume that the number of jobs in the system is 5‘,“

three. ) % -
l* j

Since there asre three service cemters and three jobs in the \:
‘",
MGty
network the total number of network states is K ‘A:;:
3+3-1)\, 31 . R,
( 3-1 ) TR e
‘ ]
‘ The state-transition-rate diagram for this network is depicted in :-,i{(‘(
s
! IR
| Figure 5.8. The ten steady-state or global balance equations are: e
; e
; ny P(3,0,0) = py ryy P(3,0,0) + py P(2,1,0) + p3 P(2,0,1) E‘-;-*-i
ey
[ug+ng] P(2,0,1) = u; 1y, P(2,0,1) + g ry4 P(3,0,0) o
+ py P(1,1,1) + pg P(1,0,2) A
ANy
g
(ng*tny] P(2,1,0) = py ry; P(2,1,0) + py ry5 P(3,0,0) Z$ .
e
+ uy P(1,1,1) + ug P(1,2,0) e
- g
. 5
[n1+u21 P(1,0,2) = py 4y P(1,0,2) + puy 244 P(2,0,1) N v y
. ]
+ "2 P(OploZ) + “3 p(onoos) :_ ;\Q‘i
A
- .“
RASAN
+ ny g3 P(2,1,0) + gy P(0,2,1) + py P(0,1,2) RN
RALLLK
(ny+n,] P(1,2,0) = py £q4 P(1,2,0) + By Tq9 P(2,1,0) .":\.\ﬁ
+ u, P(0,3,0) + uy P(0,2,1) ot
- “h."
)
Il3 P(0.0.3) = ll1 113 P(llolz) .“.‘- .
[“2"'"3] P(ODIJZ) = lll tlz P(1.0.2) + lll 213 P(1,1,1)
[[lz'.‘jlsl P(O.Z.l) = 'lltlz P(l.l.l) + ”1’13 P(ltzlo)
) P(0,3,0) = “1‘12 P(1,2,0) .
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I
Figure 5.8 State-Transition-Rate Disgram for the
Contral Server Model with Three Jobs.
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Of course the steady—state probabilities could be determined by solving
these ten simultameous equations, Another approach would be to write
} local balance equations and solve these. For example the local balance

equations corresponding to the fifth global balance equation are:

Hy P(1,1,1) = Uy rll P(1,1,1) + ) P(0,2,1) + k3 P(0,1,2)

T K B IS

"2 P(lnlol) = "1 t12 P(2.0.1)

ﬂs P(l.lsl) = "1 r13 P(2,1,0) .

) Neither of these approaches will be used here. The method described by
l Jackson will be used instead,

The oquations describing the mean number of times a job visits a
@ service center are :

07 = 0.1 05 + 0y + 0,

0y = 0.8 o

e3 = 0.1 ° .

Observe that there are only twvo independence equations, Although any
positive value can be assigned to one of the e's, assigning 100 to e
causes the ratio of ‘1/”1 to be integers. Selecting ey as 100 results

in :

.1 = 100 and ‘1’“1 =1
& = 80 and ‘2/"2 - 2
‘3 = 10 and °3,”3 = 1 .

134




T IR T T Y URY LR YRKEREAY AR M A Y RIA RSN N Y I U I O O T O I A N I I Ty o

The joint probability distribution that service ceanter ome contains

k; jobs, sexvice center tvo k, jobs, and sexrvice center three ks jobs

is
fi(ky) £,(k,) fa(k,)
1'™1
P(kl’kZ'ks) - : kz 3 3
ki ky
where fi(ki) = [] (°i/"1) = (.i/ui) .
a=1

k k
(og/u) 1 (0/0y)"2 (04/u)"?
G

Hence, P(k,,k,,k3) =

The toen steady-state probabilities are therefore:

P(l.l.l) = 2/6

P(1,0,2) = 1/6
P(2,0,1) = 1/6
P(0,1,2) = 2/6
P(0.0,3) = 1/6
P(0,2,1) = 4/6
P(2,1,0) = 1/6
P(3,0,0) = 1/6
P(1,2,0) = 4/G
P(0,3,0) = 8/G .

The normalizing constant is determine from the fact the the

probabilities must sua to onme. Nore precisely,

P(ky,kq,k3) = 26/G = 1 .
all states

Hence, G = 26. The mean queue length at cach service center is
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P
I

Ly = )&y P(kp,k.ky) .
all states

Pl
(.
b 5 5 3

1:!1

L, = (1) P(1,1,1) + (1) P(1,0,2) + (2) P(2,0,1) + (2) P(2,1,0)

=

+ (3) P(3,0,0) + (1) P(1,2,0)

B

= [(1)(2) + (1)(1) + (2)(1) + (2)(2) + (3)(1) + (1)(4)]) / 26

S
l"i,

= 0.615

5
e
o Yo

Ly = (1) P(1,1,1) + (1) P(0,1,2) + (2) P(0,2,1) + (1) P(2,1,0)

1“1 ‘v;
5%
£

+ (2) P(1,2,0) + (3) P(0,3,0)

'
L)

>
-

¥ WE

= (1)(2) + (1)(2) + (2)(4) + (1)(2) + (2)(4) + (3)(8)) / 26

NG Sy

R

= 1.769

Ly = (1) P(1,1,1) + (2) P(1,0,2) + (1) P(2,0,1) + (2) P(0,1,2)

3

SNy
< ""JJ

+ (3) P(0,0,3) + (1) P(0,%,1)
= [(1)(2) + (2)(1) + (1)(1) + (2)(2) + (3)(1) + (1)(4)) / 26

IS TS E S Y A Y YL XTI I
- > %
) ;r "n

= 0.615 NN
S
Notice that Ly + L, + Ly = 3 as expected. E:Si
L4
The utilization of a service center equals the probability that St
. the service ceater coatains at least ome customer, which is one minus ,bﬁi
::'\:::.

the probability that the service center contains zero customers, The oy

marginal probability that the service cemters contain zero customers

is: }ﬂ}:
P;(0) = P(0.1,2) + P(0,0,3) + P(0,2,1) + P(0,3,0) :

= (2+1+4+8)/ 26 =0.57

A5

P,(0) = P(1,0,2) + P(2,0,1) + P(0,0,3) + P(3,0,0)

P LA P

..4,,
AN
 -_t

= (1 +1+1+1)/ 26 = 0,154

.

s v .
]

.
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g g

136 ’:.";,:.

R TR YN YV Y R S o IR TR S N S
AN g g ]
R A
.’".-' "{ 'l‘

...... D T T A P T T T T T TR T I O ~LS
LT AT LAY gy W LA NN o « T R S N
e A R TSN N NI AN

BN 2 NS PO N AU ACAEAC Y AL




155 604 & Ay 4'a &' §° RN Y AT U LTS <l St o A el P 0 8 v ad val tal tad S B oD Vol 409 AR U s ¢ p S0 t b g L nhp s 0" 4 oW W eV aWu

-
X
[
L
AR

AR

2 2N
LR
« A

AR
Wt
Lal

h ]
hY

!

P3(0) = P(2,1,0) + P(3,0,0) + P(1,2,0) + P(0,3,0)

A
A ]
%
<
1

i

=(2+1+4+8) /26 =0.577 .

.l-.l ."
5 %
\"5 ',
r4

“X
N
bz

L

The utilization at the three service centers is :

LA

py = 1 = Py(0) = 0.423

py = 1 = P,(0) = 0.846 f%gﬁz@

-1- - e

pg = 1 - P43(0) = 0.423 . ::J\::

The throughput of the system can be determined from the LAY,
utilization and mean service time at service ceater omne. If the service -ij.--:-'
center one was busy 100 percent of the time the number of customer ::2:
served per second would be 1/10ms, or 100 jobs per second. Utilization '::}-:3\
equals the long rumn percent that the service center is busy. Hence the ;j::{
number of jobs passing through service center ome is 0.423 x 100 = 42.3 :i::::‘:“‘l',
jobs/s. The probability that a job makes a CPU to CPU tramsition is :ki’

0.1, therefore the number of customer completing service (the
throughput) is 4.23 jobs/s. The mean response time can be determine by

applying Little’s Lav to the netvork., That is,

L
R= — = — = (0,798 seconds per job,
T ~ 4.23 per J

NS

5.5.4 Open Networks with Finite Storage Capacity

TN

NN

Although the form of the solution for a system with arrival rates N
o)
dependent on the number of customers in the network was given in ';'..\."::"-
AN
section 5.5, the normalizing constant it next to impossible to _.-"_,r_'.-
- ~-“.-\‘..
RO
determine nnless there exists a positive integer K° such that A(K) = ;-:,::::.:
L \:.

L(K®) for KX>K®. The most interesting case is when A(K®) = 0. This is St
AT
NN .

RN
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because almost all real systems can contain only a finite number of
customer, Customers that arrive when the system is full are simply
turnoed away without receiving service. A common example of this is the
telephone system. In fact it was the study of this system that brought
about the birth of queueing theory.

A queueing network with finite storage capacity is equivalent to a
closed network with K. customers, The sources and sinks in the original
network are replaced by s service center with rate u(k)-x(l.-k). Since
the interdeparture process (time betwveen departuras) of this service
center is the same as the interarrival process (time between arrivals)
of the original network, the two networks are equivalent, This is best
illustrated by example. The network in Figure 5.9 is equivalent to a
single service center with Poisson arrival rate 2] and finite storage
capacity l.. To see this first recall that the steady—-state solution is

invariant to the initial distribution of customers. Now assume that all

£’ customers are initially at the first service center. As long as

there are customers at this service conter the departure process is

K* CUSTOMERS

il

Figure 5.9 Equivalent u/u/1/x* System.
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exponentially distridbuted with mean iy. Now since the departure process
at the first service center is the arrival process at the second
servioce cont;;. it follows that the arrival process is Poisson with
mean rate,

[T} for <!‘
Aky) = {1 "2

0 for k=K’ .

Which is identical to
g (y) = A -ky) = {:ul for k;50
0 for k,=0 .
Hence the first service center controls the arrival process to the
second service center, and the network is equivalent to the !/I/l/!‘ -
system., Note that K=k, in this example.
A more mathematical proof thst the two systems are the equivalent

consists of sho,ing that the probability distribution of customers is

the samo. More precisely,

k . k)
T
By ) By L)

G G

Solving for the mormalizing constant yields:

[ ]
L
G = 3(1/..1)‘ (u1/uz)k2

ky=0

. K*+1
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- kz
- (By/py) © [1-(ny/n4y)]
L P(ky) = 1/ P2 1/B2

L ]
(1-(py/ug) 1K *1

which is identical of that for the M/M/1/Kk° system with A=u; and k=k,.

An example where the customer population is finite and the srrival
rate varies according to the number of customers at the system is the
M/M/1//M system (Chapter 3, Sectionm 3.8). The system is equivaleat to

the network in Figure 5.10. Recall that for this system the arrival

< CUSTOMERS

f}@_4

Figure 5.10 BEguivalent M/N/1//M System.

Y

O
O,

Ky

ratefor the M/M/1//K system is

(=k)A for k(M
Lk -
0

for k=N ,

Thus, l‘-l and K-k-tz and hemnce

or |
(i) - ‘{3u-x2)x for ky<

0 for ky=M ,

140

l\. o

"
X

P W A
"«?}"-.“gs 5y
.’$ s" L)

[l

[
5“‘-

L AN
’ '. ( " s
4 2%

$f
\)
A g .

1(4‘\.’.:
L ErPLS

Y

1Y
5’& £ e

e
’, .-'-
po Ll
YD

'. .i .
ERER

‘s

i
L]
1

o Lo
P A

’, 'é'. Ay

-".I.I o
v
S8

b

a 4 %
Pa
RPN

R

NN ES

»
5
'N(V-

Qe




or equivalently

By (kg )=A(Mk;) =
0 for k,=0
1 L]

Note that in order to show that the probability distributions are the

same N was not replaced by l‘. It follow that:

k

1 [_1_.]"‘ [_1_]"’ NET R o Y :
P(k;) = P(ky,ky) = - - . '
and

]

G= S (1/(Mk3)1] (1lu1)l (u1/n2)kz
x3=0
- (a/pp" s (1/ (1) 1] (uy/up) 2
k%0

and finally

2
wr )
Py = g

[M1/(M-k3)1) (|l1/n2)kz
g0

wvhich is the same as the M/N/1//M system with A=y, and k=k,.

In general any network with finite storage capacity can be mapped

by this proocedure into an equivalent closed network,
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5.3.5 Sexvice Rates and Subsets of Service Centers A

For a ngut of the service centers the service rate may be s '.,"
fuotlon_;_! both the number of customers in the service center and the l‘%
number in the subset [BASK75]. The following assumes the service :':‘E'
centers are numbered such that 1,2,...,M are in the subset. Let K; be 3::
the number of customers in the subset and let ZI(KI) be a positive 'E:f
function such that the service rate of the centers in the subset is .:"
ny(ky) Zg(Kg). For this case the joint distribution is the same as F.‘g'
before except f-_,,:

M N K, “':
1[_]1 £,(k,) := Jl‘ £,(k,) [;[_1‘1’21"” , (5.44) ;_“;
- '..J.\"
where the symbol := is an assignment operator and is read as 'becomes’. - :'{;2

s
r
'.l

o

Since this will be used later, and since it is not known to de

|7
| ]
t
[ 4

proved elsewhere, it will be proved here. By considering all the ways
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in which state (kl.kz,....kn) may be reached the steady-state equation
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| I

16t

'

:":'.':"‘l

+ 3 u.i(kf.'j.) zI(kI"'l) rio P(k]_o‘oolki"’l'o.olku) L
i s
oy Wy

‘.!'. 1

+ 2”1(‘1"1) tio P(kl.ooo.ki+1,on..k~) “l‘-(
=1 I
o

iine

? N

+S S 'Ij(kj"‘l-aij) ZI(kI) rji P(kltoco.kj'.'l,o--nki-lpouc'kN) "‘~
i=1 j=1

+§’ S uj(kj+1) zI(kI'.'I) :ji P(kl.oot.k"*laaoclki-lptol.kN) |'l..:
b 1 b

- w \ A
+ s 2 "j(kj+1) tji P(kl""'kj+1""'ki-1"'"kN) \
i=1 j=M+1

)
*2 g Ry(ky+1-845) £33 P(ky,c0urkj+l, oo, ki1, 000,ky) PIy :
1=fle1 =N+l e
(5.45) RN

The following relations are from the defining equation of P(kl.....kN):

A
Xy
A

,,("II

o U Ty Tn Jn T

P(klooo-nk’_-loo-ooku) “i(ki) zI(‘I)
P(klo-o--ktlonopku) - ‘1 ).(I-I))

]
L4

for 1M

WO
P(klpcn-ok‘-lpooookﬂ) . ui(ki) for 1sK :k':rl.:"::‘
P(kloo-..kiuao.pkN) 01 l(l—l)) ."0‘ ’\:"

P(k1.ooo.ki+lnooookn) 01 l(‘)
P(klo see pki; see .kN) u‘.(ki+1) ZI(kI+1)

for i<M
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P(kl'."'ki+1..'.'kN) ‘i l(‘) 1 v
= for i>M ' e
P(kll_ccnnk‘cooolkn) ni(ki"'l)

_— ' i

s\

P( oocook +1"'00k “1secer ) (k ) 18
. ] - Y B i for 1,)>M ‘i:i
P(kilo-opk.’..lo.kionuopk“) .1 nj(kj"l-‘lj) or 1.j(l .|

R

P(ki'...'kj+1'...'ki-l'...'ku) .j "i(ki) '~
= for J(M N
P(klpooo.kj.oaonki.ooo.kn) .1 llj(kj"l) zl(kl*l) .“ 12u -{\}

P( pnoo.k +1.--o'k -locct) ) [ ] [ (k ) z (‘ ) F\ _
& j i ey mEy) (K for §>M o

P(klnou..kjpaccnkip.-onkﬂ) .1 'lj(kj+1) and i‘u R ‘,"‘\"J'\-

(5.‘6) f-‘_'._

Following the usual procedure of dividing both sides by P(kl.....kN) -
and using these relations results inm: .‘"F\

o d

A(K) + S pi(ky) Zy(ky) + E‘ug(ki) - " TR
i=1 i=k+l

P
+ S ny(ky) Zy(ky) o3 / o3 + g‘ui(ki) 04 / o4 LR
1=1 1=fi+1 .

-~

Cal

s
+ S A(K) ryg o3 + ZL(x) rio °4 ':_.1-,‘
i=] i=l+1 )

+g S"t(ki’ Zy(ky) r54 o3 / o4 *E‘ s“i"‘i’ rji 05/ oy N
i=1 j=1 i=l+1 j=1 2

“‘S 2:‘1(11) Zy(ky) 5y oy / o5 + S ny(ky) ryy 9y / o4
j=1 juiie1 =it jupe1 o
. (5.47) RN

N g e - o
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Combining the third and fourth, fifth and seventh, sixth and eighth, 0

terms on the zight yields: J;.?\

/ |
A(K) + s ng(ky) Zp(ky) + 2‘“(1‘,) - .‘..gi.c:;
i=1 i=R+1 .

+ s ni(ky) Zy(ky) o4 / 3 + g‘ui(ki) o1 / o4 ,L"
i=1 1=kl utlure

+ g A(K) rjo o3 ._‘:_,::
i=1

»
Pl
kY
>

o
‘1
1
»

{
ol Lol

*‘S g"i(ki) Zy(ky) rji oy / o4 *g‘ g"l(ki) £j1 04 /e « 7 :-f":-* (
i=1 j=1 i=R+1 §=1 :h.;s
(5.48) e

Substituting rojy = 03 - S oy rji yields : o\.t:::
j-l .’:\&Q

A(K) + 3 ni(ky) Zy(ky) + E,"l(ki) =
i=1 iwk+l

+ S ni(ky) Zy(ky) - s S piZy(ky) r5q o5 / o N
i=] i=1 j=1 AL

' i
+ ) uy(ky) - )i uz(ky) r5q o5 / o4 ".q"c".
isi+l i=k+l j=1 -

+ g MEK) ry0 o4 ‘:3 .
=1 0,
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+S s_ﬂi(ki) Z1(ky) ry5 05 / o3 +g‘ gﬂi(ki’ ryi 05 / o
i=1 j=T i=k+1 j=1

(5.49)

or equivalently,

A(K) + g pi(ky) Zy(ky) + 2.““1) -
i=1 i=N+1

+ S A(K) 40 04 + S ny(ky) Zy(ky) + E.“(ki) .
i=1 i=1 i=R+1

(5.50)
Finally substituting

N
0 *~ g ru and oy = ro4 + 2 .j rji
ij=1 i=1

balances the equation,

In the next chspter more sdvanced metworks will be covered,
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CHAPTER 6

ADVANCED QUEUEING NEIWORKS

6.1 Customer Classes

In the queuneing networks discussed in the last chapter, it was
assumed that all customers at a service center were identical, The
usual way to eliminate this assumption is to partition the customers at
a service center into classes., Within a class all customers are
homogeneous, but different classes may have different service time
distridbutions, priorities, routing, etc, It is important to emphasize
that classes are associated with service centers, and that customers
are distinguished at the service center level, This is more genmeral and
includes the case in which customers are distinguished at the network
level, For example, all customers ontering a network may be idenmtical,
whereas a customer visiting a service center for the second time may
have a different service time distribution and routing probabilities
than a customer that is visiting the same service center for the first
time. Thus, at the service center level the two customers behave
differently.

The notation used in the last chapter is easily extended to
include classes, A customer at service center i in class s, after
receiving service, proneeds to service conter j class t acoording to
the routing probability ’is:jt' The mean soervice time of a customer at
service center j in oclass t is denoted Kyt

Figure 6.1 shows s closed netvork with tvo service centers and

three classes, Service center two is represented by a service facility
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with tvo queues, one for each olass. This depicts the situation where

sorvice time q1sttibutions and routing may be differeant for different

classes, In reality there is only one queue at service center two,

CLASS 1 CENTER 1

M—— |

Figure 6.1 Network with Two Service Centers and Three Classes. -

Figure 6.2 shows a closed netvork with two routing chains, The
routing probabilities are such that a customer in the top chainm (loop)
cannot make a transition to a class in the bottom chain, The same is
true of customers in the bottom chain, Hence, the nomber of customers
in the top and bottom chains are both constants. Usually, customers in

different routing chains are distinguishable at the network level,

CHAIN 1
CENTER 1 CENTER 2
CLASS 1 CLASS 1
e | - |
CLASS 2 CLASS 2
— | o |
CHAIN 2

Figure 6.2 Closed Network with Two Chains,
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Il
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;f ath '
|
|
| ‘:".-:j'
} VAT
} Figure 6.3 depicts an open network with two routing chains. The s .‘:
number of cystomers in each chain is a random variable., It is assumed R
! = . U
| that both sources are Poisson. However the mean asrrival rate of "' X
] ':
customers from source one may depend on the number of customers in 3 ":::".:
(%)
chain one (the top chain), The same applies to the mean arrival rate of R
e
N 3
customers from source two, If the mean arrival rates are constant, :_‘:::_'::
e
which is the ususl case, then the sources cam be combined into a single ":J}:
.-i&ﬂ
Poisson source, and the network reduces to a single chain., In o
PR !
AP NN,
formulating open queueing network models, it is often convenient to -',._\f:-:.
"p "1-_-
AR
sassume that there are multiple routing chains, However, for -.';}:-';L
.!:'_';2-
computational purposes, it is desirable to have only one chain, It is g
- f:".v".r"
also true that if classes are used only for routing purposes, then /."ﬁ-“:
' "'
AN
generally, the number of classes required can be reduced by combining :"".C’_.‘,-".s
AR
the sources, Fra AT
Y
S
ISV
NAYS!
SOURCE 1 CLASS 1 CLASS1 CENTER?2 SINK 1 vy
D———.-g CHAIN 1 ' $’ | Sy
NN
[P n‘
N
SOURCE 2 CLASlS 2 CLASS 2 SINK 2 :‘.r\ )
I >__— SN
CHAIN 2 > Lo
NI
I-‘--‘:I "
Figure 6.3 An Open Network with Two Chains. NSNS
Al
.\:.-.:,\‘
S e
Figure 6.4 depicts a mixed network, The network is a combination NG N
of an open and closed network. The number of customers in the top chain :\':‘3-‘-
o

A

.'
I.t

is a random varisble, whereas the number of customers in the bottom

5%
B

L
2
)

chain is comstant,
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e ey

- CENTER1 CENTER 2

SOURCE-  CLASS1 CHAIN 1 CLASS|1 SNk
D—'.- I e
CLASS 2
. CLASS 2
o
-
CHAIN 2

Figure 6.4 MNixed Network with Two Chains,

6.2 Nonmexponentisl Service Times

Another limitation of the queveing networks in the preceding -
chapter was that all service times had to be exponmentially distributed.
The only approach for dealing with nonexponential service times is to
represent them by a combination of series and parallel stages in which
the time spent in each stage is an independent random variable that is
exponentially distributed, The necessary condition to accomplish this
is usually stated as : the probability distribution function must have
a rational Laplace transform (can be expressed as the ratio of two
polynomials in s) [BASK75] [KLEI76] [KOBA81] [HAYES84]. This statement
is conditionally correct, however, in order for the probability

distribution function to have a rational Laplace transform it is

necessary that the probability density function have one also. More

precisely,

v%(s) = sB*(s) - B(OD) , (6.1)
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N
L
EACACS
R
where A
)
b.(&) = Laplace transform of the demsity functionm, !v'av
N et
, o)
B*(s) = Laplace transform of the distribution function, Ny T
[ and :":::'\ X
| .\,.sjt
B(07) = The distribution function evaluated at 0 . o
|
| The reason for attaching such significance to this point, is that there ::N":
“ J\-,\:,\-
| VRN
i are no oxamples in the literature, and the statemoent leads one to _,.:
e w W
'I‘.F l-
| believe that it is the distribution function that is expanded to obtain AN
) -
the stages, when inm fact it is the density fumotion. The corucial point ::“M‘-
- ." ~
[ e
is that the joint density function of the sum of two independent random '::}
.::.I'\ *,
variables is the comvolution of the individual density functions, and AR
]
therefore the Laplace transform of the joint density function is the - ’:
product of the individual transforms, ".:
The procedure them comsists of taking the Laplace transform of the
J
PSRN
density function and expanding it imto a series of exponential stages. ';:;xjx
T YA
‘~\‘.\':~.
The obvious way to perform the expansion is to use the method of f:'::,.:
.'.\‘\"\
ordinary partial fraction expansion. However, this does not yield the NN
]
LAy
minimum number of stages, and the computation complexity rises rapidly ::"\-:
AN
SN
with esch stage, Although it may not be well known, there are several AN
v % N
." "\-
versions of partial fractions (COX55]. Any density function that has a ‘o
'
rational Laplace transform can be expanded in the following form : r:r
o
b°(s) = bg + 5 80...85-1bj I-‘Il B/ (s+py) (6.2) .;_}.’:f
=1 oL
where z is the order of the denominator, and ‘iﬂ’i'l' j::j‘\':h-
for i=0,1,...,2~1 and b_=1, The structure of the representation that :.\-;E-.
DA
"
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results from this type expansion is doepicted in Figure 6.5. The number
of stages always equals the order of the demominator. Therefore, when

there are repeated roots, it results in fewer exponential stages than

would ordinary partial fractioms .

L] a ay LI
Hy K2 > 000 .

Figure 6.5 Cox's Method of Exponential Stages. -

When a customer arrives at a service facility of the type in
Figure 6.5, he has a fixed probability bo of immediately leaving the
facility, experiencing & zero length service time. On the other hand,
there is s fixed probability LT that bhe will ehter the service
facility. If he enters, then he immediately proceeds to stage omne., The
service rate at this stage is Ky and the mean service time 1/u1. Upon
completing service at stage one t.e customer proceeds to stage two
sacoording to probability 84, or exits the facility according to
probability bl. If a customer roaches the last stage, then after
receiving service he exits the facility. The mean service time of a

customer is the weighted sum of the mean time spent in each stage, More

precisely,
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E(t) = iilo(l“l1) + [ii+ iﬁ] sg8y(1-a3) + [ii+ i§+ iﬁ] ag8383(1-a3)

e s [ii’ i@* cee o }n] 8081820 8g-1 . (6.3)

A little arithmetic shows that

¥ and t 1 ant seel
E(t) - —g <+ o 1 + o 1‘2 $ o o o 1‘2 ‘-1 . (6-‘)
o S ] k3 Ka

Equation (6.4) is very useful in deriviang margisal steady-state
probabilities. It does not appesr elsewhere iz the literature mor does
the equation that precedes it.

In order to illustrate the procedure assume that the Laplace
transform of the density functioam is

3, 8.2
bo(‘) . 3 834 + 225 + 16 ]

4(03 + 5:2 + 85 +4)

Expanding this function according to Equatiom 6.1 results ia

382 + 143 + 12
+

b.(s)
4 (3+42)2 (s+1)

.
e

A B C
+ + +
542 (s+2)2  (s+2)3(se1)

[
L

1 3 s 1
- - b + +
4 4(s+2) 4(s+42)2  4(s+2)3(se1)

1 3 2 L] 4 1 4
4

8 542 16 (s+2)2 16 (s+)2(se1)
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Dy oquatiag like seefficients the a’s and bV's san bde determised, i.e.

Vo T /4 aghy= 38 agaiba= S/16 sgajay = 1/16
snd the results ere
‘.‘1/‘. '1.1/2- ‘z.,l‘.

The eorresponding representation of the serviee time is depicted in

Figure 6.6.

Al
i
a
a

.2 Y uy et

— |

— e

r.—_..-——..-.q ---—1
N
b4
Q
:
PGS T ——

i o e - = = o o o ]

Figure 6.6 Rzxample of Cex’s Nethed of Lzpenentisl Stages.

A goed ehesk (s to sompare the meas serviee time caleslated froe
the origina] density funseties with thet gives by REquation (6.4), This

cas be asecomplished vith the equation:

[}
® ()
Ele] » - —— . (6.9)

ds )
(ELEI?S). This oquation bheldes for cny dossity funstios and fellews free

the faest that theo contivnous tise, sosest goverating fesstion sad the

Leplsce tremssfore of the density fumetion differ osly is that the tere

o®t sppeers in the fermer ond ¢ *! is the fstter.
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Coatinning,
pre) = [40s2es02e8000) (3624160422) - 4(s348e24320016) (362 42000m
L (4(s3+502+85+4)]2 ] =0
- 5/8

sad from Equation (6.4)

3/8 (3/4)(1/2) . (3/4)(1/2)(1/6)
2 2 1

Bic] = = 5/8 .

Is this example all of the poles of the Laplace transform are
lossted on the negative real axis. Novever if the structure is going to
be spplied to any deasity fuaction of a noanegative random varisbdle,
thes the poles may oeens sayvhere iz left-half plase. This implies that
the time speat in a stage may be a complex sumber, aad that the
probability ¢f mekisg & tzsamsition ost of this stage ia an
infinitesimal amount of time is sleo ecomplex. All of this lesds to the
conclusion that the simple linesr baslanee equations of the preceding
chapter 20w beoome complex eoquatioams with complex probdabilities. The
isterpretation is that the stages are purely artificisl. They are only
istroduced oss ¢ mathomatical tool for the representation of
sosespenestisl serviee times. These faets may bde disturbimg bdut they
shosld set be. Theoy are exsctly the same prisciplec that are nsed in
cirenit smalysies. Thore ore 80 complos voltages and currests in as
elocstricsal netverk. Compleox snsmbeors are introdseed solely for the
purpece of smalyeis. At the ond of the snslysis sl]l of the resslts are
resl. The same ies tree here. Altheugh the prebability distribution at »

fietitions ostege say be comples, the distribetion of customers at real
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service centers are resl.

Before_departing the subject it should be pointed out that the
ptoblo-i_SBco:; even worse if ordinary partial fractions are used., Not
only can the time spent in a stage be complex, but the routing
probabilities may be negative. Again, everything at the end turms out
positive and resl. For a more formasl justificatioan of complex
probabilities, the reader is referred to the article by Cox referemced
earlier. For s justification of negative probabilities, the reader is
reforred to the article by Bartlett [BART45]). Unfortunately no matter
which method is uvsed, if the coefficient of variation CV (standard
deviation divided by the mean) is small, the number of stages is
approzimately 1/cv? [COXSS].

Finally, im order to imcorporate Cox’'s method of stages into
queuneing networks with multiple classes, additional subscripts are

required, Figure 6.7 demonstrates this, This first subscript is the

service center, the second the class, and the third the stage.

o e e e - - - - mE—,_,———, ————————— ]
|
QUEUE | |
| % e 3; 8en. !
il : roq Hicy o Hea 2 o000 od Hien :
!
K} ) ‘ 1 :
: b'¢° blcl bic2 bltn-l blcﬂl
! —
]
b e e e e e e e e e o e e e e e d

Figure 6.7 Notation Required to Incorporate Cox's Method
of Exposesntisl Stages into Queueing Networks.
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6.3 Service Disciplines

In the queueing networks of the last chapter, the distribution of
customers at ; service conter was invariaat to the service discipline
as long as it was work conservative. The reasons for this were that all
customers were identical and all service time distridbutions
exponential. If, however, there are customer classes sssociated with a
service center then all customers are not ideatical, aad the order in
which customer are served plays an importaant role. The same is true if
the service distridbution is not exponentisl, This is because the
exponentisl distribution is the only ome that has the memoryless
property, Thus, if a customers service is iaterrspted the probability
of a transition to amother state is not the same &s before service was

interrupted. The role that the service disciplise plays should become

clearer in the next section when the state space is discmssed,

6.3.1 Preemptive and Noapgeemptive

If once a customer begins service he camnot be iaterrupted, the
service discipline is said to be nompreemptive, If oa the other hand
customer can be imterrupted, the disciplise is said to be preemptive,
If a customer that was iaterrupted resumes service later at the same
point that he was isterrupted, thes the discipline is said to be
preemptive ressme, If the service discipline does a0t depead on any
aspect of the ocustomers’' service demasd, then the disciplime is said
to be service demasnd independesnt. The followiag is a short description

of some of the more popslar service disciplines:
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6.3.2 First-Come-Fizst-Service

The segvice disciplime iz which customers are served ia the order

of their arrival at the service ceater is called First Come Firet Serve

(FCFS). It is moapreemptive and service demand independent.

6.3.3 Priority

A priority service discipline is o3¢ ia which customers are
oclassified into types and assigned s priority asccordiag to their type.
The next customer to be served is the ome that has the highest
priority, If more thas ome ocustomer has the same priority the ome that
arrived first will be served first. If am arriving ocustomer can
isterzupt the sezvice of a customer with s lover priority theam the
discipline is called preemptive priority, If service caasot be

isterrupted, it is oslled noapreemptive priority.

6.3.4 Rowad-Robia

Almost all isteractive computer systems use the Romad-Rodin (RR)
sorvice discipline or some derivative of it., It is also referred to as
time-slicing. It is defined with respoct toa fized interval of time
called ¢ quantum (or time-slioce), Customers are served by a single
server in first-come-first-serve order as lomg as their service times
do not exceed the guantum. Vhen s customer’s ourresnt service time
reaches the guantum, bhe is procmapted . A proompted customer reentors
the guese ot the end (as if he had just arrived), and waits to receive
as sdditiona]l quantsms of serviee., Each customer repests this process

uatil his service demand is satiefied. The adventage of this discipline
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is that 20 customer has to wait s long period of time before receiving

some soervice.-Thus, customers vwith short service demands may arrive

after customer with lomng service demands and finish ahead of them.

6.3.5 Prosessor-Shazias

The socviee discipline in which all customers receive egqual and
simultaneons service from a simgle server is called Processor Sharing
(PS). That is, if there are k customers at the service ceater them sach
customer simultaneocssly receives service bdut at a rate of (1/k)th the
serviee rate . Whes o 2ev customer arrives at s service center, he
immediately bdegins to receive service at the expesse of reduciag the
servise rate to the other customers, Vhen s customer completes his
serviee, the share of the server he vas receiviag ic divided equally
among all of the ressiaiang customers. The P8 service discipline csanot
be asctually implemented, but is an ezcelleat approzimatioan of the RR
discipline whea the quantem size is small compared to the mesa service

time. Analytical results are mueh simpler than those for RR,

6.3.6 Last-Cue-Fizat-Rezve-Preenptive-Rosume

A service diseipline that is strictly preomptive is last-come-
first-servise-precmptive-resnme (LCPSPR). Whes s aev customer arrives
st the serviee eoanter, he intorrupts the customer that is receiving
serviee and immedistely starts to receive service. Whenm s customer
fiaishes bdeing served, the ssetomer that was last interrupted resumes
hie soervice. Although this serviee discsipline is rarely used 1

practice, it is included Yecaunse most of the resnlts that hold for PS
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also hold for LCFSPR,

6.3.7 [afiaite Servers

If the number of servers at a service center is infinite or at
least equal to the number of customers that can demand service
simultaneously, then the service center is said to have an infinite

server (IS) service discipline, Customers always begin receiving

service immediately upon arrival, therefors there is no service order

A
AR
or waiting line. Also, there is never comtentioa for a server. The ::::
AN

servers usually do not represeat physiocsl resources. Service cemters of :}:ﬁ
A )

this type are used slmost exclusively to represeat delays that ooccur in Tk
- wha

real processes, It is always possible to coalesce IS service centers - :?qh
.'_'._,\

PO

iato a simgle service ceanter by imcorporating new classes, -;5?:
e
6.4 The State Space e,
e

As previously stated, im order thet s process be s MNarkov process, Qa;f
Cade

it is mecessary that the state of the process suamarize all pertiment
past history. PFor a service cemter with msltiple classes snd/or
nonezponential service times, the history that must be coamtaised in the
state depoends on the service discipline., For example, if there are
msltiple olasees st a service center and the service discipline is
FCFS, then the state must contais the order and class of customer ia
the quese and soerviee (acility. If the service time is nomexposentis)

and the serviee dincipline is processor sharing, thena the state must

contain the stage of service that sach customer is im, If there are




multiple classes and momexponential service times and the service
dlooiplllo_}s preemptive, then the state must contain the order in
which oloto-o:s are to be served, the class of each customer, and the
stage of sexvice that a customer wss in before he was preempted,

Is order to keep the notation manageable, the state space will be
defined oaly for the class of queuneing networks that have product form
solutions. It makes little semss to do otherwvise, since at the present
these are the oaly metvorks for which exact solutions can be obtainmed.
Bxceptions are closed networks with a small number of service cemters
aad customers (See Chapter 7, Section 7.4). The notation and many of
the results ia this chapters are from the article ‘Open, Closed, and
Mixzed Networks of Queses with Different Classes of Customers’ by
Baskett, Chaady, MNuat:z, and Palacions [BASK7S].

Service centers will be referred to as types FCFS/1/, PS, LCFSPR,
or IS asccordiag to the following:

FCF8/1/ - The service center has a single server and the service
discipline is first-come-first-serve (FCFS). In addition all customers
must have the same servioce time distridbutioa amd the distribution must
be expomential, The servive rate may not depead on the suamber of
customers ot the service oceater (later ia this chapter this restriction
will be removed and multiple servers allowed).

P8 - The service center has a simgle server and the service
discipline is processor shariag (i.e., whes there are k customers each
is receiviag service simultaneocsnsly at a rate of 1/k secomds of service

per seeond). Bach class of customers may have a distimct service time
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distribution, however all deasity functionms must have rational Laplace
transforms, _

LCFSPR —-Tlo service center has a single server and the service
disciplise is last—ocome~first-serve-preemptive—resume (LCFSPR), Each
class of customers receiviag service at this cemter may have a distinct
service time distribution, hovever all density functions must have
rational Lapleace traasforms,

IS - The number of servers at this type of service center is
infinite (or at least equal to the asmber of customers which can be
demanding service simultasmeonsly at this ceamter). BRach class of
customer receiving service at this ceater may have a distiact service
time distribution, hovever all deasity fuactions must have rational
Laplece transforms. Service ceaters of this type are said to have an
infinite server (IS) service disciplisme.

Aay queneing netwvork composed of service centers of these types
has a product form solutioa. The next section is concerned with the
justificstion of this., The necessary coaditioss ia order for a network
to have a product form solution are : (1) the service disoipline is
FCFS and all ocsstomers have the same service time distribution
regardless of olass, or (2) the service disciplise at the service
conter must be sush that every oustomer starts to receive some service
immediately spoa arriviag [CHRANT7) (CHANSS). Service ceater types PS,
LCFSPR, asand I8 satiesfy the second cosditioan. Although there may de
other service disciplimes whioch satisfy the secoad coadition they are

of little practical siganificasce and will sot de discussed here,
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The state of the network with N service centers and C classes is a k.j,‘:“\'
vector hl"!"“”N’ where x; represents the conditions prevailing at 'p; '
. - o
service center i, The representation of depends on the type of ":":‘::
\l
service center i. o"o:",w
h"';'.‘c"
If service center i is type FCFS/1/, then :
Oy
xi = (xil"iz'....xiki) :ﬁ}:’
ATy
where e,
k; = the number of customers in service e
center i ,-'-3-:3:
NN
aad RN
X34 = the class of the customer jth ia AN
FCFS order. (6.6) ;.-:J:.r"
ItN{\t
'
_ {'V Al
If service center i is type PS or IS, then o
2y = (9430943000008 et
where ST
uic - (ulc,ﬂzo,o.ooﬂzicc) !,-'J-'Ji d
‘. l.'::f::f 1
.’-."\: )
and .f_:&,-.
@, = the number of class ¢ customer in ::\:\:
the nth stage of service NN
and 2:_ 05 Y
2, = total number of stages for a class TN
c customer. (6.7) O
AR
B
Lt .\.\
If service center i is type LCFSPR then, !‘_"
AN
s
x‘ - ((cl‘cl)'(°2'¢2)'""(ck"ati)) :\-'E'~
\ )
where '.‘-;ﬂ‘ '::'.
ki = the number of customers ia service S
center i e n
.‘v‘...'
and NN
(cj.cj) = the class and stage of the jth ',;\-:.:{.
customer in LCFSPR order. (6.8) R
R PCAC,
RO
A
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6.5 O dy-State Solutjom

For a network with C classes and N service centers of type
FCFS/1/, PS8, ;CFSPI, and IS the steady-state probabilities are given
by:

[ f(x)f()o.of(x)
1 Py, neesry) = A(S(K)) — 2;2 nx. (6.9)

where G is normalizing constant chosen to make the steady-state
probabilities sum to ome, A(S(K)) is a functiom that depends on the
arrival process, aand each f‘ is a function that depends om the type of
service center i.

If the network is closed, them A(S(K)) = 1, (6.10)

If the network is open and there is omly ome chainm, then
k-1
A(S(K)) = ”o Als) ,
‘-
wvhere [ equals the number of customers ia the metwork,
and A(a) is the mear arrival rate when the metwork

has 'a’ customers. (6.11)

If the network is open amnd there are J chains, then

LY

A(S(K)) = [‘[ A (e)

i=1 a=0
where lj equals the sumber of customers ia chaia j,
aad L,(l) is the mean arrival rate to chais j when

it has ‘a’ cuwstomers. (6.12)
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Ia order to simplify the equations for f‘(x‘) let

sl
) Ajgn ® }l.“" . (6.13)

If service cemter i is type FCFS/1/, thes

X !
f,(x) = (1/pp r( e - (6.14)
-1 i)

If service center i is type P8, thes

C

ie Sics |,
f,(x,) = k1 ﬂx M (10,0 Ajen/Pien] (17a ") -
c=1 ==l (6.1%)

If serviee center | is type LCFEPR, then

f,(z,) = rr (o A (1/ V]
1'% =1 te) “leojay 'le,.,

16.16"
If service center i is type IS, thes
C 3
ie Sica -
fi(zy) = n‘ H‘ (lo)e Aen'Pieal ‘1 G
PL - 61"

All ompty prodest terms are asssigned the valee of -1

These statemoents are presented as o theores 18 the paper v
Baskett referoneced osarlier. The following 1s takes directly (rve that
peper : ' The theorem is preved by chocking that the 1ndopenden:!
(local) dalasee oquations are satisfied. ls overvy cave for wbhich these
reoults apply the independent dalanee oquatiocas reduces t- the Je’i1ning

queetions for the LI Theeoeo twc- sentomces are the 8.
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justification givea. Several months were spent trying to prove by local

balasce that the theorem holds for the general network. Unfortunately,
it could oaly be shows to hold for specific networks (no general
types othor tham those inm the last chapter). There are just too many
degrees of freedom., The gesneralized netvork contains an arbitrary, bdut
finite aumber of service cesters each of which may be types FCFS/1/,
PS, LCFSPR, or IS. Is additios, there is an arbitrary but finite number
of classes assooiated with each service center, and for types PS,
LCPSPR, and IS the service time for esch class may be represented by an
erbitrary det fimite msmber of expomeatial stages. The network may be
either opea, closed, or mized, asd may comtsin an arbitrary but finite
sumber of chaims. If the metvork is opem or mixed, thenm each open chain

mey bave its ova arrivel process which may depend on the number of

customers in the chain.

-

The comclusion resched is that the theorem holds for the
geseralized netvork, bat it caamot be proven to do so, at least not by
the techaigqse of local balanmce. Some other disappointing and disturbing
facts sre : (1) the equations for fl(xi) types PS, LCFSPR, and IS are
sll imcorrect as stated in the original paper (indices and sudbscript
errors), (2) the equatioss do aot appear elsewhere in open literature,
and (3) there are 20 oxamples in open literature showing the theorem
bolds for a specific metvork. These statements are based on over three
years of research ia this area. The reason for bringing out these

deficiencies is that all of thew will at least be partially addressed

here,
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y 6.5.1 ANew Justification for Networks with Serviee Contors of Irne
FCFS, PS, a 18

o

Figure 6.8 depicts an arbitrary network, aad Figure 6.9 s bdlow-wp

view of service center 3, Observe that there are two csustomer classes

at service center 3 and that the service time distribatios of doth

: classes are represented by Cox's method of exposestisl stages.
A
For the moment assume that service center 3 is type IS. That is
p there are an infinite number of servers at service cemter 3, and there
is never a waiting line or queue, In addition all customers sare
N receiving service simultaneously, and 1no customer or class of :~
» customers affects the service of any other customer, Thus, each stage
[ - behaves as an independent service center of type IS with an exponential
’\ distributed service time. It follows that the network in Figure 6.10 is
e equivalent to the network in Figure 6.8. Furthermore, the service ~
. _'.:.s
. centers and routing probabilities can be relabled as in Figure 6.11 to j:{:
s .:_\
N eliminate all class and stage subscripts, Although it was not :}i
LSS
explicitly stated in the last chapter, a FCFS service center with an <
N
exponontial service time distribution and a service rate of :j:
LGk
L Sl
. is identical to an IS service service with the same service time ST
distridution. Thus, for the network in Figure 6,11 ::u
A
, LI
. ‘-‘k' ]
k7 1 A
i
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Figure 6.9 Blow-Up View of Service Center #3,
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- £,(k,) = o, /p,(a) . OAD
1*"1 HI“ .c"::'

J— [ ?"

(Nete that the oquation for (‘(k‘) is from chapter 5, amd that load .’*ﬁ'
dopendent servieeo rates will not be ocovered uatil later iz this

A

ehaptor). Solviag for the relative throwghputs in terms of the class t.r\

throughputs aad routiag probabilities yields: N
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Similarly, t,(x,) in Figure 6.9 and the product of the f:l(‘i) over the ARV SY

'oqnlvnlut set of service centers in Figure 6.10 is R
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Now eomsider the case ia whioh the serviee diseiplime at service
ceanter § ll-pxooooQOt sharing. There is aleo sever o weiting line or
quesne at this type of secrviee center, More precsisely, the server is
shared oqually amomg sll ocustomers. Thus, the oaly differemce betweea
sezvice center types I8 and P8 is that » ~ustomer is the first receives
one second of service per second and a customer iz latter receives 1/kl
seconds of servioe per secoad, wvhere t‘ is the totsl smmber of customer
in the P8 service cesnter. Thus, it follows that service ceater 3 caa be
expanded into a subnetwork of service ceaters just as was done for the

IS case with the exseption that the service rats becomes

iy
"i(ki) Z(‘I) = T for k‘)o ’
where i is an arbitrary service center in the subnetvork, and ‘I the

total number of customers in the subnetwork., It follows from Chapter

5, Section 5.4.5 that

1 Ky 1 1
J‘[ t(xp) = [ /zg(an J’L £,(xy) = g1 J‘[ £,(x) ,
-3 a=1 - B

which accounts for the fact that the only difference in fi(’i) for type
IS and P8 service center is that the latter is preceded by ki (the
symbol := is an assignment operator),

The conclusion is that any network composed of FCFS, PS, and IS
service centers can be mapped into an equivalent network by letting the
stages grow to full service centers, Hence, the proofs in the previous
chapter are sufficient to cover a large class of networks, but not all

of those considered by Baskett.
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6.5.3 lesal Balanes

Leeal holanee vas deserided is the last chapter and is casily

ezstended to netverks vith ¢lasses snd nenespesestisl serviee times. It

oquates the rate of flow isto s state due to & elass o enstemer

entering a stage of serviee, to the flow out of that state due to o

class ¢ esatomer leaviag that stage of serviee. From the deseriptios of

loeal balanee, it is easily seen that oach global bPalanes eguation

(equates total rate of flow imto a state to totsl rate of flow omt of »

state) is a sum of looal balamce equations. Therefore, the solstioa to

the local balasce equations satisfies the global balamee equations,

Some imsight can be gaisned by recallimg the origims of globsl aad

loocsl belamce equstions. Global balamce equatioms sre derived from the -

fact that a queneing netvork is g multidimensionsl, dirth and death,

Markov process. It is the solstiom of the global balamce equatioas that

-

W~ .n". <

is important, However if the network is open, there is Do way to solve

TR
Py

-
3]

these equations mathematically (there are slways more unknowns than

[s

equations), The only way to obtain a solution is to guess, One way of

guessing is to assume local balance, That is, loocal bdalance is an

assumption which may or may not be true, If the assumption is false

then the local balance equations will be inconsistent.

>

o

The technique and power of local balance will be domonstrated by ;}

san example. Consider the problem of finding the steady-state iﬁ
»

probabilities for the network im Figure 6.12. The service discipline is

processor sharing and there are two customer classes., Class 1 and class

2 customers arrive from Poisson sources with mean rates of 11 and 12




+%
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ANV

Figesze 6.12 Type P8 Service Ceanter with Two Classes.

:I\- o
‘ »

v
[d

'. .c

respectively (the two sources could be combimed, but this will mot be -

s

\."-‘ 'l'.\. c

done here). The service times of class 1 and class 2 customers are

A

SfALL
LAANS

v

>

exponentials distriduted with means llpl and 1/;2 respectively. Since

h

‘a2
o
IO,

P/
4?
LS

the service disciplime is processor sharing, the service .rates depend

on the number of customers in the service center. The service rate of a

e
R AR
Pl 40

YAaHsH

;i

class 1 customer is uy/(k;+k,), where k, equals the number of class 1

q;
4

1‘1
L)

D)

customers in the service center and kz the number of class 2 customers,

o /l.'
XA
Bty
PR A
% % s

Similarly, the service rate of a class 2 customer is uzl(k1+k2). The

Ty
r *‘5.
5N

probability that s class 1 customer departs the service center in
infinitesimal time h is [h k; p, / (k1+k2)]. Similarly, for a class 2 ':E
customer the probability is [h kz Ky / (k1+kz)]. Let the steady-state
probabilities be represented by P(kl,kz). where kl and k2 are the }f. 4y
number of class 1 and class 2 customers, The state—-transition-rate -@;;5-‘

diagram of the network is depicted in Figure 6.13. Ny
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The global belanmeo oquations for states vwith two or fevwer .‘$

onstomers ene:

(A #35)P(0,0) = u,P(1,0) + § P(0,1) .

(Mg 42y 491 )P(1,0) = 3;2(2,0) + dyoP(1.1) « 2, 000)

Y
o
4l
R

‘.‘ .l.' "
LR NS

&

(Ay*hg¢py)P(0,1) = by P(1,1) + 4yP(0,2) + 2P(0)

o

»

s

e
& 4 N

(A *ag*ny)P(2,0) = wyP(3.0) + dupp21) « 2 p01,0)

ot
.'. :.}&;h .

PN XX ERAAN
\Nf'l'\"~.

h)

VA ARAL

(Agorge duy ¢ dup)P1.1) = dyyP(2.1) « dupp1,2) ¢ A P(0,1) ¢ 25P(1,0)

h
/

-
)

P
d
r "} 2

(A +hg*+ug)P(0,2) = 3y P(1.2) + wyP(0.3) + 2,P(0,1) .

o)
ﬂ?;ﬁ
WY
0¥

S L Gy
’d

e

Notice that there are six equations and ten uaknowns, No matter

5
<
%

how many equations are written osut there will always be more equations

& ort

than unknowans! The corresponding loocal balance equations are:

.'\-'.'(“. A

2Pty A

',I.I
8y
' , [l

v e 8_»

A
}.'.’I 2 f
e N
4"‘ “‘"

A,P(0,0) = u,P(0,1)

I‘-
LA,

&
&
[/

Y
o
}l‘. )

A1P(1,0) = u,P(2,0)

2,

AP(1,0) = du,p(1,1)

#yP(1,0) = A;P(0)
21 P(0,1) = dy,P(1,1)
XZP(Ool) - MzP(O.z)
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ti'(3.°) - ’1’(’.0)

2,P(2,0) = dy,2(2,1)

n P(3,0) = A,P(1,0)

2P(1,1) = 3y P2.1)

AP(1,1) = du,P(1.2)

dy P(1,1) = 2,P(0.1)

du,P(1,1) = 2,P(1,0)

A;P(0,2) = dy,P(1,2)

329(0.2) - ﬂz’(Oos)

FIP(Oaz’ - lzP(O.l) .

Solving these equations in terms of P(0,0) yields:

P(1,0)

(Ay/ny) P(0,0)
P(0,1) = (A,/uy) P(0,0)

P(2,0)

(Ay/1y)% P(0,0)

P(1,1)

2 (11/u1) (12/"2) P(0.0)

P(0,2) = (A,/uy)2 P(0,0)

P(3,0) = (A,/uy)3 P(0,0)

P(2,1) = 3 (Ay/uy)? (Ay/my) P(0,0)

P(1,2) = 3 (hg/uy) (Ay/uy)? P(0,0)

P(0,3)

(A,/u5)3 P(0,0) .
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Although it may be a little difficslt to see vwithost solviag more -:E:E:
equations the form of the solutioa is : .,
- :‘:::'\ ,.

P(ky.ky) = (A7) 2321 [(Koky)1 (1/ny) (1755 1) (1/n) 21755111 2(0.0). :::
S

Notice that the first term ia brackets corresposds to the equatiosm for o
A(S(K)) with two chainms, The second term ia brackets corresponds to the ’
equation for f,(x;) (type PS), where ¢;, = ¢,, = 1. Obvicusly G equal ".;:';‘
1/P(0,0). :.:'-v
The power of 1ocal balance is : answvers can be obtained, and it is EZ:E -
only necessary to guess at the general form of the solution. In order J-.-.\Gf
to show the equations for f;(x,) are valid for other types of service {\_’_
centers, this same problem is worked in Appendix A for FCFS and LCESPR i j,"’:._,
service disciplines. In addition, Appendix A also contains an example :,é
of & sorvice center with two exponential stages and LCFSPR service 15
discipline. As previously stated these are the only known ¢xamples ;S:S}:
demonstrating that the steady-state equations im this section are Ejgi:\_:
valid, oy
Unfortunately, only a small subset of service centers have local “f,.':’_
balance, For example, if the service discipline of the network in g;-f
Figure 6.12 is changed to nonpreemptive priority, local balance is not y; Jx
applicable., This can easily be seen by writing the global balance ::‘.f-::ji::‘
equations, Let (xl.xz.....xk) represent the state of the network, where _E-:
x4 is the class of the customer currently being served, Xy the class of ':\‘.4-
the customer to be served next, x; the class of the customer after x,, é\%:
etc, The global balance equations for all states with two or fewer ' :: "1
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o
N
::‘\
customers are: :2.,'
- Poage®
(Ag439)P(0) = 3;P(1) + yP(2) ;.:.;"
ol
»
'l
().lﬂ.z*uz)l'(z) = ulP(l.Z) + uzP(Z.Z) + kzP(O) A
N
(11+).2*u1)P(1.1) - ulP(l.l.l) + uzl'(z.l.l) + xlru) E\,
VA
(Ay*ha+*p JP(1,2) = u,P(1,1,2) + paP(2,1,2) + A,P(1) A
17427 *1 ] 2 :.:-:‘_-.:
(ll*xz*h)P(Zpl) - LIP(I) oV
(Ag*hg+1g)P(2,2) = uyP(1,2,2) + wyP(2,2,2) + A,P(2) . niv
N
AN
To show that local balance is not appliocadle all ome needs to do is :_:":’
PAAA
examine the sixth equation, There are three ways to depart state (2,1) R
- ’-".:
and only one way to emter it, Thus, local balamce caamot apply, mor ocas '}.'Z:"
RN
?..f
it be extended to do so. This couwater example proves comelusively that NS
AR
t same (] og ¢t agre u -
P P ad ser 20 vice ::::;::::::
"“ .“',
e
ALY
PP WP
AT
ways to depart s state than entex it. This is not surprising since it R
does not meet the necessary conditions for a product form solution, \ ':f
It is also proven ir Appeandix A that local balasnce is not o
applicable if the service discipline is FCFS snd customers do not have r_.‘_;?_-:.‘,
ARV
the same service rate, p. In this case local balance equations can be :-:'::::.'
YRR
written, but they are inconsistent. .
NNy
ST
\!.:'
N
hHEN
RSN,
AN
NN
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¢.5. Nazaiaal Riatzidatisss

The move doteilod states in section 6. % are noecetsary to derive
the steady-otate prodeadilitics. In this section wmarginmal distributions
ere odteined by aggregatiag states. Lot the aggregeate syestes stete bde
the anaber of enstomoers of ensh clase in vaed service conter. Nore
formally the aggreogete eystem state is definmed to be the vector
(71"1'""'N)' wvhere Y, " "il"l)'”"tlc) sad k . is the msamber of
customers of clase ¢ is serviee conter i. Also, leot 1/.“ be the mean
service time of elaee ¢ enstomer at serviee cemter i, The stesdy-state

aggregate probadbilities are givean by

P(yl.yz.....yN) = A(8(K)) o R
where
¢ x
K, ! [‘L (17K 1) (o, 7m0 20 . for i FOFS/1/,
o- Ps, or Lasnc
.1(’l) -
c
Eie
[‘k A7k 1) (o luy,) tC, for i IS.
o= (6.18)

The expressions for 'i(’l) are derived vy somming f‘(x‘) over all x,
with 111'*12--"-*1c fized. The msultinomial theorem and Equation 6.2
are useful (an exawple will be given lster). Note that for type FCFS/1/
service centers the By has been moved inside of the summation and
changed to Bice This was done both to simplify the notation and to
emphasize the similarities between FCFS/1/, PS, and LCRSPR. It is

however required that for FCFS/1/

“11 = lliz - ' = H‘c . (6.19)
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The fact that the number of customers in a closed chain is
constonﬁ_ni;;nsts eliminating class distinction and distinguishing
customers sccording to chains, More precisely let the network stats be
(’1"2'""‘N) where z,(k;;,k; 9,000,k y) and kij is the number of chain
j customers at service center i, It follows from the multinomial

theorem that

'1('1) '2(22) eoe 'N(‘N)

P(zl.zzl-oll!N) = x(s(l))

G
where
a fﬁ kij
| 39 (1/k;,1) (ey./py,) ’ for i FCFS/1,
! i=1 H 1T PS, or LCFSPR,
w,(z,) =
151 < 3 .
R :
kj; = } kjo = number of chain j customers at service center i,
¢ in j
01 = e¢joc = tho relative throughput of a chaim j customer

¢ in j through service ceater i,

1/pgy= (1/045) } (0jc/Hig) ™ mean service time of s cdsin
¢ in j customer at service cester

Observe that the equatiosm for v, (2,) 1s tsomorphic to the eune
for '1(’1)' That is, class pParameters are si@piv roep o »: ~-

parametoers. Also aote that if there is caly -me . ass =¢ e

A
g
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o
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'1(’1) = ‘1"1" The advantage of this aggregate state over the Y

R

provious one is that the number of feasible network states has been 5."‘ :

LG

significantly reduced. It follows that since the purpose of G is to ;&

: vy,

force the sum of the probabilities over all feasible networks states to ™ .:'.‘!::

one that it is much easier to determine G nsing this aggregate state. " '."":

S

If one requires probability distributions by class the value of G can 'f

| v'".

then be substituted into the previous set of equationms, %M e
o

i A further simplication is possible by defining the aggregate state .

AR

as the total number of customers kl in the ith service center .j-.;,.af

)

(eliminating class and chain distinctions). That is, let the state be

,y-,
<5
5_1,
a8

(kl.kz.....ku) where ki equal the number of customers at service ceater -

7’7
S;'Sr

i. If follows that the steady-state probabilities are given by :

'
%

e A
»*.‘.,N
»

x .
LA

_\l'
Fd
Ly A

¥y

P(ky,kp,..0ky) = A(S(ED)

by (k1) By(ky) o.. hy(ky) s
]

where

¢ ky
[ } (.“/u“)] if i FCFS/1/, PS, or LCFSPR
c

B
h = Lk l‘l 1
ER) ﬁ ¢

(3/ED) [ 2 (»,.,/.a,h,)]k1 it i1s,

-‘:.

[0 3
o e
s » N

E;

.’l' (]
‘,‘....{‘-_

o'y

(6.21)

’

r,r,v. v

f
- Ry
»
Y
I

4.8

where the sum is over all customer classes which may enter service
center i,

Although this simplification is valid for both open and closed
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netwvorks, algorithms to calculate the normalizing comstant do mot use
it (closed networks)., They rely on the fact that number of customers in
each chain i;-constant. On the other hand, if the network is open and
the mean arrival rate is constant, then a closed form expression for
the normslizing constant cam be obtained with the aid of these
equastions, This will be done in the next section, In contrast to the
earlier equations this set of marginal steady-state equations appear
in several places in the literature [KLEI76) ([(BRUEB80] [SAUES1}
[LAVES3].

As promised earlier the material in the section will be

illustrated by an example, Assume that the service center in Figure

6.14 is type PS.
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} |
|
e a a a
21 ! 210 H224 21—’.1 H212 212’-4 H213 =
1y ] Y )|
= b210 Do bay2 bzvsl
-
I |
' :
|
{ I
e 3220 3221 |
| |
I 1 ba2o - { ba22s I
! —
| |
L————--———-_---—-——- ------ J

Figore 6.14 PS Type Service Center with Two Customer Classes.
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For this service center, “qi{zz
ety
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The last expression is obtained by multiplyiag and dividing the g"?
X
first sumamation by 121 and the second bdy k9, and then recognizing the Fran

— - O
summations as special cases of the multinomial theores. From equation ?? :
A
6.2 the mean service times of a class 1 and class 2 customer are ' !::zf
.y _;

i : _
respootively ';:. ;:“;
e
o
¢
1 _ 210 f210 a1 210 f211 %212 Y
P2y M1 M2 P213 ot
s

1 _ 220 ‘f220 "221 :

H22 221 222

oWy

| Finally, substitoting these expression into the last equation for- :}* N
‘ - 5.\’.;
‘2(’2) yiolds ‘E::H:,

Y
.. 122 ... k22 ot
. ra) w[1[21 1 22] ] :

2 - T v T 11 T . - g

2 k1! | #2 k2! | P22 B

Now assuming that class 1 and 2 both belong to chain j, snd .,x_.::

. R

summing over all k;, and k,, such that k12+k22-k2-kj yields w,(z,).

k2
| ®1 22
——— Y cmma—
B3 H22

where again the last expression is obtained from the multinomial

theorem. Multiplying and dividing this expression by 0y1%09, gives
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Since the e’s are relative throughputs the term inside the brackets is vt

the average service time and ®y3+05, the relative throughput of a chain :v '\"'i'.
A

J customer, That is,

01 .
- 2j .—Iﬁv (1
'2(’2) [ ] » : J

where kj =k, 0 = 051+955, and POt

[ [} Ca
S 21 1, _°n 1 AT

Ko j 021%922 K23 21%022 My o Qf
Wy,

Now since there were only two classes at service center 2 and both o]
of these belonged to chaim j, it should be obvious that hy(ky) = O
wy(ky). In fact the expression for hy(k,) was derived esrlier as an A

intermediate step and is: PCAY

21 €22 k2 E
hz(kz)- — e — . [a

B21  HB22 )

6.5.4 Opeg Networks with g Constant Mesy Arrival Rate bty

For an open network with a constant mean arrival rate, it is ""'nt |
possible to obtain closed form solutions for the normalizing constant ChOTACS,
snd steady—state probasbilities, If mean arrival rate is constant, then S

the marginal steady—-state probabilities are given by f\i‘i
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RRILY By(ky) ..o hy(ky)

P(klo&nooookﬂ) = G

(6.22)

where K = kl + kz + o+ kN . Multiplying the numerator and

denominator by A and letting G absordb the A in the denominator results

in:

k
af a ) 052 aap) oo 0N ay()

. (6.23)

P(kllkzooo-'ku) = G

The normalizing constant is determined by summing this expression over

all feasible states. That is,

G = } cee i [{1k1 hy(kq)} 02 By (k) ... o nN(xN)}]

k=0 kj=0  ky=0

- [ 5 21 n1(xl)] [é-:“z nz(xz)] Lz-:k" hn(ku)] .

kl-O

(6.24)

Honce, the expression for G factors into terms where ec:ch term involves

only parameters for s single service center. That is,

N
G = Gy »
n=1
where
[
6y = } . by(ky) .
t‘-o

It follows from the definitions of G, and Pi(O) that:

1
Pi(O) = —G-' ¢

i
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It also follows from the geometric series and the series expansion of Vasls e
oX(exp*), that L
- X

_ 3;» 4;

r1- } Moyc/Rio) for i FCFS/1/, PS or LCFSPR Sar
c )

P;(0) = ﬁ o
0N
oxp [ Z = 1(01¢/F1¢)] for 1 IS . (6.26) ;FQ?SH

\ N
Let ‘, X3

4 g
} Mogg/ug ) if 1 FCFS, PS or LCFSPR I
(]

Py = NG
ﬁ 21(0“/!“) it 1 18. 6.27) - ::V-
c

(RN
. R

Note that p; is the utilization of type FCFS/1/, PS, and LCFSPR service O

centers since p; = 1 - Pi(o) for all single server, service centers,

Ao
=3

However, the utilization of type IS service centers is by definition

A b

zero, Returning to the problem at hand, it follows that the number of

L LT
‘J’

customers in each service center is an independent random variable.

s
LI

&

More precisely,

51

-
F4
Py

ey
s

T
‘-

‘

P(kl.kz.....ku) = Pl(kl) Pz(k-z) XK PN(RN)

where NN
k

pyl (1-p)) if i FCFS/1/, PS, or LCFSPR

P,(k,) = x _ o~

o il o Pt ar i Is. (6.28) y

-

The results are amazing! For FCFS/1/, PS, and LCFSPR service .~'

centers the marginal distribution is the same as the distribution of :v:\ N
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customers in an M/N/1 system. If the service center has an infinite UM
- L A
number of secvers, then the marginal distribution is the same ss the :%"’:ﬁ‘
ALy
v
distribution of an M/M/= (with an appropriately defimed p;). Moreover, : ;;
e
the netvork steady-state probsbilities factor into products with one o
term for each service center, and each term is the solution for that “ ,."‘
PN
service center ‘in isolation’ with a Poisson input and with an Q&"“xj.u
exponential service time and appropriately defined Py (e tfn
v oy
It follows that since the distribution of customers are the same ::::1
Ot
that the mean values are the same. That is, anbey
onan
S
Pi if i FCRS/1/, PS, or LCFSPR ’
tTh _ :':.'::‘“‘-r
L = Z*F:E“"
NS
Py if 1 IS. (6.29) y :1
Since the network is open, the mean rate that customers emter the AT
OO,
network equals the mean rate that customers leave the network, Thus, :"E:;i '
NG
the throughput equals the mean rate that customers emter the network. &y 1:.
dtaih ot
The same is true at the service comnter level, Since ®ic equals the mean ' A
PP
number of visits a customer makes to service center i, class ¢, it '._f";:.'
oy
Ui A
follows that the throughput of service center i is ;:_:,;.;\'.::
.30 e
Ti'liuc . (6.30) I
° :.r“-'.-"'
Given the mean number of customers and the throughput, the mean ;'é:é X
. |‘|
response time can be caloulated from Little's law, Usually it is the ;ﬁ."‘_ .
performance measure of the service centers, not the overall network, *lf:»‘;
NS,
that is of interest. e
TS
h ‘)q.'
If there is more tham onme service center, the distribution of the .C"\"?"'\,,.
::: \f
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response time cannot be determined. This is because the response times
at the lcrviq: centers are not independent [BURKG64], Notice that if s
network consists of a single service center with all customer classes
having the same exponential service time, then the distribution of
customers, throughput, and mean response time are the same for service
center types FCFS/1/, PS, and LCFSPR, As pointed out by Kleinrock,
although the mean response times are the sameo, there is a large
difference in the variances. One may, therefore, conclude that the
average response time by itself is not a very good indicator of system

performance [KLEI76].

6.5.6 Load Dependent Sexvice Rates and Multiple Serveszs

The service rate at s service center is said to be load dependent
if the rate that customers are served depends upon the number of
customers at the service center., For example, if a service center
contains identical and multiple servers then the service rate is s
function of both the number of customers and the number of servers, In

the previous chapters this has been expressed as:

where
ki = the number of customers at service center 1

n; = the number of identical servers

By = the service rate when k, = 1 . (6.31)
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The class of networks discussed in this chapter can be extended thatuth
not only to include this gcase, but more general cases as well, If :
N
Z;(k;) is the relative service rate (relative to p; which is the MY
service rate vhen k;=1) at service center i whem there are k; customers Lt
CNS
at service center i then 'fg'_'_':]";
v-"_:'-;: '
ky ety
£,(x;) = £,(x;) H1 1/Z,(a) (6.32) i
R
85(yy) =850y [] 1/25(0) (6.33) BN
a=] Lo
g
ki l.*v\‘-. "
wi(z,) = w,(z,) 1/Z,(a) (6.34) S
1'% it%4 I-]l i - F;.:‘:,:
ky
hy(k,) := hy(k,) ['[1 1/Z,(a) (6.35)
as

where := is an assignment operator and is read as 'becomes’. The proof
of these equations is identical to the one in the previous chapter
section 5.4.5 where the subset of service centers is simply service
center i, The only restrictions on 21“‘1’ are that it be a positive

function of kl and Zi(l)tl. However, it is usually assumed that there

exist some m such that for all kill 11“‘1"21")- For example, for the _’.v_v;v

_\:;- -

jdentical and multiple service center case ::‘-‘

f .“

13 for k(= RSN

i iy Mot

Z,(k,) = R

1\ N N

ny for k) my , (6.36) :\“ N

]

Nt

and the service rate is p; Z,(k;). Such service centers are often K ]
)
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referred to as 'limited load dependent’ centers because the service :,.f: -
a W
rate depends upon ki only up to m. It will be assumed throughout this J\ e
chapter and the next that all losd dependent service conters are of ; :
\ .‘.
this typo. il
I'-l...'u
Now let ¥ 2 Alejo/nie) (6.37) St A
°c ':'.':’&..'-
.._:.._?__-
and p,; = gi/zi(-). Also let G; equsal the component of the normalizing ‘::';}\}
)
constant that is due to service center i. That is G, = 1/P1(0). It AR
IO N
foliows that e
.I\,'-'-
e ene
6y = 2 Ay Lomg(xy) = 2 gt [l vz T
k=0 k=0 a=1 - Ll
P
S
=1 kg » K ky =
- } i n 1/Z4(a) + i n 1/Z4(a) 7
k,=0 a=1 - a=1
i i .
S WA
SRS
k a e
=1 k i @ k 'i"."‘h
- Yl M 17zi0 + &2 [ 17230 PRIV AC I RN
k=0 a=1 a=1 k=0 RSN
e
A,
n ky AN
8 =1 % e
= + . (6.38) '-\v}\'
- X TN
ki-o i
JEACIKCEN [T zim x
a=1 a=1 N
IR
RSN
Similarly, the mean customer population at service center i is ':"“'i\_."\'
RO
1 o k, S K, o RN,
Ly = — 2 R T } Ky & T 17zy0 AT
¥ =1 1 a=1 “Inid
\ i NN
P
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1 1 X ki 1 L od x ki ..}L‘\'-
= —a;- } ,k" t Y i ” 1/Z;(a) +—G; E kj 34 i n 1/Z4(s) .

- a=1 - s,
k=1 ¥ =1 s

1 =1 x ki gi- a2 o ki ':‘:b
" Yuat ] vz e — [1 17240 Y @yvm oy

a=1 i a=1
ki.l ki-O

5
>

oo

Lt
Y
n

'?'v R \‘. v, ’
o N
R

b
- 104 [ ® + 1 ] . } i . (6.39)
n (1-py)  (1-py)? 6f o1 ki
1 n Z;(a) ﬂ Zi(a)

a=]1 a=1
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y v a
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LA XS

For the the special case of

k for k.{( =m Tl
i i i -

n; for k) m; , (6.40) -':.:;,.‘

1
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py (mep;)
1 171 (6.42)

L; = mp, +
i i¥i

G; =l (1-91)2

It should not be surprising that G; is idemtical to 1/P, for the M/M/m
system and L; equals L of the M/MN/m system, Also note that p; is in -

agreement with the utilization of the M/M/m system.

————

There are, however, cases when one might want to assign Zi(ki)
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differently. In these cases the more complicated expressions must be
used. In closing, the results of this section are valid for FCFS, PS,
and LCFSPR so;vico disciplines., However, unless it is explicitly stated
that the service rate is load dependent, it will be assumed to be load
independent, Furthermore, the notation FCFS will be sssumed to imply

FCFS/1/ (load independent) unless stated otherwise,

6.5.7 An Example of Queueing Networks with Multiple Classes

The following is the only known example of an open queueing
network with more than one class of customers and more than one service
center, The oxample is from 'Computer Performance Modeling Handbook’
[LAVES83]. The example was not intended to illustrate the analysis of
queuneing networks, but to show that the number of classes required to
descride the routing can be significantly reduced by combining sonrces.
Unfortunately, the example as it appears in the teferel;ce does not
contain a figure showing the routing, and therefore is very difficult
to follow., In addition, all equations and results are stated in
sentence form, The example as it appears hers has been greatly
expanded.

Figure 6.15 depiocts the model of a2 small communications network
organized as s ring. Messages (customers) originate at the sources and
terminate at the sinks, Every message must pass through one or more
communication links (service centers). For example, a moessage from
source 1 goes through 1ink 1 to get to destination 2, through links 1

and 2 to get to destination 3, and through links 1,2, and 3 to get to
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destination 4. A message from source 2 goes through link 2 to get to oty
destination_3, through links 2 and 3 to get destination 4, and through 00
links 2,3, and 4 to get to destination 1. Nessages from sources 3 and 4 t,:.-,q

behave similarly. 1 ‘»‘hc'

SOURCE SINK }'
LINK vy
% |:'::

SINK { | SOURCE A

) h ‘:‘
- )
LNk | 4 e
x 2 LINK _ :JF
L
# - NCS o .
| (0

SOURCE SINK ~

= O{ —{{o> N
- 3
el

LINK .:’ 'l‘l.

’

SINK SOURCE

Figure 6.15 Model of a Communications System. *
ey

The routing of messages in the netvork cannot be described by a PN
single set of routing probabilities, This is because the routing
probabilities depend on where the message originated, For example a RN

message from source 1 that passes through link 3 must terminate at ~>.:_-:§\.»

destination 4, whereas messages from the other sources may be routed e
through 1link 4, In order to describe the routing, it is necessary to -}‘,}_(Q
partition the messages into classes, If it is assumed that there are N

four sources, thenm six classes per service center are required to N
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describe the routing (see Figure 6.16). For example, source-destimation

~palrs of messages that pass through lisk two are :

(2,3),(2,4),(2,1),(1,3),(1,4), and (4,3),

(1-2)

(1-3)
(1-4)

< 1 s &
4 2
]
{3-2)
& | 8
sl 2| = (3-1
(3-4)
© 3
<,
YD

Figure 6.18 Classes Required for Routing with Multiple Sources,

On the other hand the number of classes at each service cenmter can
be reduced by combining the four sources into a single (aggregate)
source, This reduces the number of classes at each service center
required to describe the routing to three, ome for each possible

destination (see Figure 6.17). For example at service center 2 classes

are required for destinations 3,4 and 1. Thus, a minimum of 12 classes
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are required in order to describe the routing. In order to obtain a

solotion, it is necessary that all messages have the same service time

distribution, and that it be an exponential,

1/4
SOURCE

RN E

Figure 6.17 Classes Required with an Aggregate Source,

It is assumed that mossages arrive from the four sources at a rate
of 2.5 messages per second and all destinations are equally likely. It
is also assumed that the mean message length is 360 bits and the
transmission rate is 2400 baund, Thus, the arrival rate (A) of messages
from the composite source is 10 messages poer second, 1/4 of these

messages are routed to each service center, or 1/12 to each class at
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; esach service center. The service rate ("1) is 2400/360 or 6.67 AR
mossages p-ot- second (the message length includes overhead)., The &%s
et
relative throughput equations are : ﬁ:ﬁt.,
e
| €1 = 1/12 + o, —
| 29
.12 o 1,12 + .43 -:} ‘}‘
P i
| 0y, = 1/12 ATy
12 Nt
A
.21 = 1/12 + .12 :vl\:.“
AN,
> )
5
0, = 1/12 N
"\F
- ;:_’;Z;E;;
-.';:'5
.32 = 1/12 + 023 _.;-F‘I
., = 1/12
32 RN
- ‘\."h
L
04 = 1/12 + o3y 5&?
(]
042 = 1/12 + 033 Y
042 = 1/12 . ‘b:'::_\;"
VS
PRI
Solving these equations results in : :..-;._:.,
LS
®11 = 21 7 °31 = 0 = 1/4 TR
»\'.q: ,
®12 = 22 = °33 = %2 = 1/6 T
040 ™ B892 ™ €aa = 044 = 1/12 :\."::'
13 23 33 43 . AR
The utilization at each service center is : “\*?ﬁ
:\;‘:ﬁ
e
Py = 2 AMeje/ry) = (A py) (ejqtejrte;s) ;r_-.ﬁ |
o P,
LS
A,
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= (10/6.67)(1/4+1/6+1/12) = 0.75 .,

The distributton of messages at each service cester is:

P (k) = (0.79)"! (1-0.78) .

The mean number of messages at each service center is

= 0,75/(1-0.75) = 3 messages,

L, =
i l-pi.

The throughput at each service center is

Ty = A } ®jc ™ 10 (1/4+1/6+1/12) = 5 messages per second,
°

The mean response time at each service center is
Ly
Ry = —;I- = 3/85 = 0,6 seconds per messages,

Thus, the mean response times of messages that pass through 1,2 and 3
service centers are 0.6s, 1.2s and 1.8s respectfully. The mean response
time of an average message is the weighted sum of the means, Since all
means are oqually likely, the mean response time of an average message
is: (0.6)(1/3)+(1.2)(1/3)+(1.8)(1/3) = 1.2 seconds,

One of the problems facing the designer of s communication network
is buffer size., If it is too small then messages will be lost, In order
to properly determine the buffer size, one needs to know the
distribution of messages at each service cemter. That is, wmore

information is required tham just the mean., For example, the

probability that the service centers in Figure 6.8 contains more than 6

customers is:
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P(k; > 6) = 1 - [P(0)+P(1)+(2)+(3)+(4)+P(5)+P(6)] = 0.1334 . A
That is, 1334 percent of the time a service cemter contains more thst :} ¥
- My

6 customers. Hence, oven though the mean is only 3 messages s buffer *ﬁﬁa
e ! :,

size of 6 is inadequate!
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- CLOSED AND NIXED NEIVORKS

7.1 Iatzoduction

The equations derived in the last chapter give only the form of
the solution for closed and mixed networks, Nore specifically, & closed
form expression for the normalizing comstant, G, was not, and in
general cannot be obtained, The reason for this is that the number of
customers in a closed chain remains constant, aend therefore the
distribution of customers at the individual service centers are not

independent, By definition, the normalizing constant, G, is the

summstion of all uvnnormalized probability distributions over all ~

feasible networks states, Clearly, for a closed network the number of
feasible networks states equals the number of possible ways that
customers can be distributed over the network, such that the number of
customers in each chain remains constant, Unfortunately this number
increases rapidly as the number of service centers and/or the number of
customers increases. The reader is referred to the example in Chapter §
in which a network consisting of a single chain with eight service
centers and 20 customers yielded 888,030 network states. It should also
be noted that each term in the summation contasins virtually every
parameter associated with every service center in the network, Thus,
even for the smallest of networks the expression for G would probably
be too complex to determine how the parameters affect performance.

Fortunately, there are other ways of determining G than directly from
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its defiaition., Hovever, any expression derived from these is still so :" o

complex that usunally all one can handle is the mumeriocal result,

R
\;‘_
L

At the present there are three algorithms for determining the

20

P
RN

%
-

performance metrics of closed networks : the Comvolutionm slgorithm, the

%

Mean Value Analysis (MVA) algorithm, and the Local Balance Algorithm

5
o
«

s
y

for Normalizing Constants (LBANC). All extend to the full class of

S
G
o il
-
L Lo

\ networks known to have s product form solution. However, no one of them

-

is best for solving all problems on all machines.

>

Y

Before discussing the advantages and disadvantages of these '-’Q"\
algozithms, it is first best to make some general comments and define S VA
some notations, All of the algorithms have recursive equations, That
is, either the equation for the normalizing constant or some other Cu iy
parameter is givea ian terms of the same parameter with one less "%ﬁ‘.

customer in the system. More precisely, one less customer in ome of the

, .

chains, For a network with J closed chains let V = (V,,V,,....Vy) where ;:.:_’,\,
e
ot

V.i is the number of customers in the jth chain, The vector V will be :_s. : s
OO

referred to as the population vector. Now let lj be a vector with a one
in the jth compoment and zeros everywhere else. Thus, the vector V-lj
represents the network with one less customer inm chain j.

The convolution algorithm was developed by Buzen in the early
1970's [BUZE?73]. Its name comes from fact that the recurrence equation
for G(V) resembles discrete convolution, In the case of a single chain
closed network, G(0) is assigned the value of one, This value is used
to compute G(1), the normalizing constant when there is ome customer in

the system, The value of G(1) is then used to compute G(2) and so on,

201

=

N o T NP
AR YOG W)
v ‘*"\-‘




L ERE WL W RN ENENER AN RARN R T,y 5 at 85 bt ba TSR

The process is repeated until the desired population has been reached.
For s single chain network with N service centers, the algorithm
requires lp;}oxinctoly N+V multiplications and N+V additions.
Unfortunately, the algorithm is sensitive to the value that must be
assigned to omne of e¢’'s, and numerical problems caa occur regardless of
what value is assigned (usually overflow), In addition, the complexity
of the algorithm increases significantly for networks with multiple
chains, The details of the algoritha will not be discussed here due to
the lack of room and the fact it is discussed elsevhere, The interested
reader is referred to 'Computational Algorithms for Closed Queuecing
Networks’ by Bruell [BRUE8S80O]. This reference is a condensed version of
his Ph.D dissertation. It contains over 200 pages and starts vith the
equations developed in the previous chapter . Approximately two—thirds
of the book is devoted to this onme slgorithm,

In the late 1970’s Reiser and Lavenberg developed an iterative
algorithm that can determine mean performance values without finding
the normalizing constant [REIS80], Hence, the name MNesn Value Analysis,
For single chain networks the mean values are determined for the
network with one customer. These values are used to determine the mean
values of the netwvork with tvo customers, and 30 on, The slgorithm
requires approximately the same number of computations and storage sas
the convolution algorithm, however it is less semsitive to numerical
problems, It is the algorithm of choice except for networks that
contain several service centers with ‘limited load dependent’ service

rates (See Chapter 6, Section 6.5.6) [BRUESO] [LAVES3] [HAYES4]. In
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addition it is the only algorithm whose equations have intuitive :’6:“':‘
I o'
meanings. This not only makes it casier to explain, but more h.
- R
importantly, easier to remember. For these reasons and because there §Cf:
& ¥
' !
exist no examples in the literature, it will be discussed here, \?::
) l.- (N
However, it will not be discussed with the same mathematical rigor as _
4
the previous chapters. There are several reasons for this., The first is :.‘Q""f )
-.‘. by
that many of the proofs employ results that are from the convolution e
¥
algorithm, which would have to be explained and derived also. Another .
Sy
reason for not deriving all of the equations is that this wounld ::_-:\._-
“*i‘*l'(
conflict with presenting the material in a tutorial fashion, which is a -t:-g.f-:’
NN
LdA! "
primary objective, That is, many of the simplest to use equations are ) N
- ey
special cases of more goneral equnations, and they cannot be derived ??::-‘:5
without first deriving the more general ones. :‘,E'_q'.i
Fa' U
LBANC was inspired by MVA and closely parallels it [CHANS8O]. In )
Oy
. B
addition to determining the mean performance values, the normalizing :.;:‘:.:.\
A
N
constant is also determined as implied in its name. It is the algorithm ::v'.':-'\
SRR
of choice when probability distributions are required., However, it has ' )
~ vy
RN
the ssme numerical stability problems as the conmvolution slgorithm, RN
:;.r.:r.:z
and the same disadvantages as MVA when dealing with limited load \:',"‘
5 ey
dependent service rates., Another disadvantage is that its equations do
LS
not have intuitive meaning and are difficult to remember, With the :::_\;:
I\.-\..$:
exception of a few comments, LBANC will not be discussed further. :.‘:"-\
A
L' SN
7.2 Closed Networks ‘f%:.;
v, \.o:’:
For a closed network, the complexity of determining the ”:::
”, 3
performance metrics is directly proportional to the number of feasible v’y"::
A Y
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network states, and as stated in the last chapter the number of
feasible network states can significantly be reduced by eliminating
classes and distinguishing between customers according to chains.
Although this is the starting point of all algorithms for closed
networks, the authors of these algorithms state this in very obscure
ways. For example Reiser, the anthor of the MVA algorithm, simply
states that a network that allows customers to switch classes can be
mapped into a model without class changes [REIS80). Although this
statement might be implied in the reference he gives, there is no such
statement in the paper. Bruell starts transforming the classes inmto
what he called equivalent classes without giving s referemce or _
justification for doing so [BRUE80]. In addition, several of Bruell's
statements and equations concerning obtaiming class metrics from
equivalent class metrics are wrong, Chandy and Sauver, the authors of
LBANC, make the statement that it is more convenient to first obtain
metrics by service centers and then obtain class metrics from these

(their statement as given is valid only for single chain networks)

e
A

;'Y

-~ %

LY
P A

)
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R
3¥¥.
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]
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Ay

fﬁ
5ok
-

LY
P
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(CHAN8O), Again, they give no reference or justification. In addition, Aed)

many of the authors that have made extemsions or modifications to the
original algorithms make statemoents such as each chain j customer l
belongs to the same customer class, or that the term class and chain

are used synonymously., They make no mention of the fact that the i'

original algorithms or their modified ones can handle networks in which &VTT

customers are allowed to change classes, It is believed that at least _~:'-

part of the confusion arises from the fact that there is no reference e
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explicitly explaining this. Nore precisely, it is believed that the NS
L.
aggregate state in which customers are distinguished according to iﬁ%ﬂf
g
chains, along with its justification given in the previous chapter, is Sgﬁf‘
WY
not new but does not appear (at least explicitly) elsewhere in the gﬂ&fﬂ
literature, __.-_:':.:
Considering the problem at hand, once the chain performance E;ﬁ;:,
:,'.:_‘.:,\
metrics have been determined, class performance metrics cam be easily f?;ﬁ,}:
| B
calculated. For example, once the normalizing constant has been ':-F:-':
LA,
determined its value can simply be substituted into the equation for ;:$C$\
r‘ft?:;
probability distribution by class. Before deriving the equations for Rhsf
. - -
converting chain performance metrics to chain metrics, a notational - 'fjijn
o d
et
change will be introduced. The mean service rates of a class ¢ or chain ini:j:
. -‘:_\
RN

J customer, denoted Kic and “ij respectively, more often than not have
appeared in their reciprocal form. Therefore, let
Upge = 84, (7.1)
lluij =8y . (7.2)

Obviously, $5c and 83 sre the mean seorvice times of a class ¢ and

chain j customer at service center i, The equations for determining L
- -
A,
mean class moetrics from mean chain metrics and their derivations RO,
)
follow: BN
Ay
Throughput by class can be determined from the known relative e )
RN
D &)
throughputs ®ic and e More precisely, \3\"r'
) -
= P ey
I,
Utilization by class can be determined from the equation : ;::3?~‘
o
Pic(V) - [(.ic'ic)/(.ij'ij)] Pij(V) » (7.4) ALY Y
)
:\"\"-v
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which follows from the reasoning that since the e's are relative
thron;hpnts.-oicsic and °ij'ij are relative utilizations, Similarly,
the mean number of class ¢ customers st service center i is given by :
Lic(V) = [('10'10)/('1j'1j)] Liy(vm . (7.5)
which follows from the fact that the term in brackets (the ratio of
relative utilizations) is the conditional probability that an arbitrary
customer, waiting for service or already receiving service, is in class
¢, given that it is in chain j. Class response time can be calculated

from Little’s law. MNore precisely,

7.2.1 The Arxival Theorem

Mean performance parameters for a queueing network with multiple

closed chains and a product form solution can be determined from the

-
-

three principles :

(1) A chain j customer arriving at service center i "sees’ the system
with himself removed and in equilidbrium,
(2) Little’'s Lawv applies to chains,

(3) Little’'s Law applies to service centers.

The first of the these principles is known as the arrival theorem. It's
proof, [LAVE?79], depends on results that can only be derived from the
convolution algorithm and will not be repeated here. It is important to
emphasize that the arrival theorem only holds for networks that have a
product—-form solution, Most of this chapter is concerned with the

spplication of these three principles.
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7.2.2 The Throughput Theorem

As its name implies, MVA deals with determining the mean values of
performance metrics such as throughput, response time, and customer
distribution. However, it is possible to determine the normalizing
constant from these values via the throughput theorem. It states that
the average throughput of a chain j customer through service cenmter i
is :

G(V—IJ)

[ ]
B V) ij . (7.7)

Ty (V) =

where G(V-lj) is the normalizing constant of the network with one less
customer in chain j. The throughput theorem is ome of the primary
results of the convolution algorithm and will not be proven here.

Solving this equation for G(V) results in

—_ % (7.8)

G(V) =
Now, since °1j is known and MVA requires the calculation of TiJ(V) for
all V up to the desired population, G(V) can essily be determined. The
procedure will be illustrated later by examples. Unfortunately, this
step does add to the storage requirement of the algoritham, This mey or
msy not be an issue depending on the size and population of the network
and the amount of usable memory.
At this point some additional comments about the normslizing
constant are appropriate, As of the present there is no algorithm or

scaling technique that will always preveant overflow from occurring when
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tryiag to caloulate the normaliziag comstant., Ome of the primary
advnntu.oo-;t MVA over <ocoamvolution and LBANC is that it doesa’t

require the normalizing comstant to obtaia performance metriocs.

7.2.3 = ad = s etworks

In order to illustrate the MVA algorithm comsider a single chain
closed network with N, load independent, single server, FCFS, service
centers. Clearly, the mean time a customer stays at a service center is
his mean service time plus the mesn time it takes for the service
center to dispose of the backlog of customer ahead of it, Since the
mean service time of all customers at service center i is the same, the
mean response time of s customer at service center i is:

Ry(V) = s, [1 +L,;(V-1)], (7.9)
where the term Li(v-l) is the average backlog of customers and follows
directly from the arrival theorenm,

Throughput canm now be calculated from response times by the

equation:

Ti(V) = V/ 3 (eg/ey) Rp(V) . (7.10)
n=]

The oquation for throughput follows from the fact that (°n/°1) is the

number of times a customer visits service center n before returning to

service center i, and therefore the summation is the time it takes a
customer to pass through service center i and returmn,

The moean number of customers at each service center can now be
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calculated from Little’'s law, More precisely :

‘4
-

'-

P

Ly (V) = T, (V) R,(V) . (1.11)

P ' |
W Thus, R,(0), T,(0), and L;(0) can be calculated and these values used :;$
)
LY >:
::' to determine Ri(l), Ti(l). Li(l). the results used to determine the '1:'
Wy ¥
. performance metrics for V=2 and so on. At any point in the Y
l"
:t calcolations, the utilization of the service center cam be calculated ?‘*:
O from :
’5‘. &
; -
Although it was assumed that all service centers were load ‘;(
:' independent FCFS, the equations are valid also for load independent PS ‘i\
Yo N
) Fa s ¢
and LCFSPR service centers, This follows from the fact that the .
* P
: - R
l" aggrogate state probabilities are the same, and consequently, so are .,::.:-
e S
§: the mean performance metrics, The infinite server case is trivial. That ey
D) '.:_\‘-
is, since the number of servers is always greater tham or equal to the .
S - ‘\
. number of customers, the mean response time is just the mean service ::-,,.
i
;; time. A more program-like definition of the algorithm is given in Table :
. ' 98
7.1. Notice that the throughputs for all but ome of service centers are @
L] -‘@
: obtained from their relative throughputs. i-.:
" PR
" As an example, the closed network of Figure 5.7 will be reworked ',-»':,
[y ) f:"
J using MVA, For convenience, service rates and relative throughputs are :
N N
b " repeated here:
D A
o
oy $; = 10ms e; = 100 ':4.{"
': 8, = 25ms e, = 80 .:‘;
i) o
o $3 = 100ms e3 = 10 . f-:';-l
o .:,'-
" '.Q
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Begis T
For 1:=1 to N do {initialization)
Ll(O) = 0

For v=0 to V do {body])
begin

{response time)
For i:=1 to N do (response time)

s; (1 +L,(V-1)] 1if i FCFS, PS, LCFSPR
R,(V) =
8 if 1 I8

{throughput)

Ti(v) = o3 v / g oj By(v)
J=1
For i:=2 to N do

Ti(V) = (‘1/01) Tl(V)

{quene length)
For i:=1 to N do

Li(V) = Ti(V) R (V)
end {MVA body)
{utilization]}
For i:=1 to N do
8 Tl(V) if 1 FCFS, PS, or LCFSPR
Pi(V) =
0 it 1 IS

Eand.

Table 7.1 NVA Algorithm For Single Chain, Load Independent, Networks,
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Caloulations for v= 1

R, (1)
Ry (1)
Ry(1)

T, (1)

Ty (1)

Ty(1)

L, (1)

Ly(1)

Ly(1)

L KL 2, g v R M Yoo FREREANANRE R 1] B g B .t gab PR TR T c 8 bp' N 1. %g v

= (10¢1073) (1)

(25¢1073) (1)

= (100°1073) (1)

i} (1) (100) - 2s

(100) (10°10°3) + (80)(25¢1073) + (10)(100°1073)

= (80/100) T, (1)

20

= (10/100) T, (1) = 2.5

= (25) (1001073)

0.25
= (20) (25¢1073) = 0.50

= (2.5) (10001073) = 0.25 . -

Calculations for v =2 :

R, (2)
R, (2)
Ry(2)

T, (2)

T,(2)

T3(2)

L, (2)
L,(2)

L3(2)

BV I e
CA
] d
".0" \‘!l‘.g AN }.‘('

P

= (1001073) (1.25) = 12.51073

(2501073) (1.5) = 37.5%1073
= (10001073) (1.25) = 125%1073

. (2) (100) - 36.36

(100) (12.5¢1073) + (80)(37.5¢1073) + (10)(125¢1073)

= (80/100) T;(2) = 29.09

= (10/100) T;(2) = 3.636

= (36.36) (12.5%1073) = 0,445
= (29.09) (37.5¢1073) = 1,091

= (3.636) (125¢1073) = 0.445 .
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Cslculations for v = 3 :
R, (3) = (1001073) (1.455) = 14.55¢1073
R,(3) = (25010°3) (2.091) = 52.2801073

E Ry(3) = (10001073) (1.445) = 145.501073

i T.(2) (3) (100)
. 1 (100) (14.55°10°3) + (80)(52.28°1073) + (10)(145.5¢10°%)

, = 42.3
T,(2) = (80/100) T;(3) = 33.84

X T4(2) = (10/100) T,(3) = 4.23

; L, (3) = (42.3) (14.5591073) = 0.6155

L,(3) = (33.84) (52.2801073) = 1,769

Ly(3) = (4.23) (145.5¢1073) = 0.6155

! p1(3) = (1001073) (42.3) = 0.423
pa(3) = (2501073) (33.84) = 0.846

p3(3) = (10001073) (4.23) = 0.423 .

,
o

Lo
If desired the normsalizing constants csn now be calculated from "’;:'_"
; I:'J‘.'
] the throughputs, More precisely, -:"'
:r'f"
G(V-1)
G(V) = —— ©1
W T, (V) ’
: G(0) =1,
(1)(100)
G(1) = ————— =4 ,
( 25
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(4) (100) SN
G B c— . . 'f:’
(2) 3636 11 2
- _ .:l“.i‘;
(11)(100) W l.'.'lg
B c———— N “ s
6(3) 73 26 Ihégﬁi
SR
SRR
7.2.4 Single Chajn ~ Load Dependent - Closed Networks RN
AT
Let s,(k;) equal 1/p,(k;). For service centers vith limited load -,‘:J"; ‘
DI
;‘ dependent service rates the asversge response is obtained from: PRI N
PR
o

rd

X
s
5y Yy

Y

S ™ g
Ryj(V) = 5 k; s3(ky) P;(ki-llv-l) ’ (7.13) §‘ '::.
ki.l . .
- SN
};:‘;'f
where Pi(ki-llv-l) is the marginal probadbility of finding ki-l o

B_4i
oy

customers at service center i, given that the network contains V-1

27
-

customers, It can be determined from the recurrence equatiqn:

-

e’

s
2
L%

’Y
":1 P

[V
AR

for ki-o and V=0

Pi(ylv) = & sy(k)) Ty(V) Py(ky-1{V-1)  for k>0

L) . 5 5
£,
I'.I.:

L\

X

1 - § Py(kylV) for ky=0 and V>0 .
k;=0 (7.14)

e,
5"'
)

-

.

P 25

PE
5%

£
‘.

Note that the equation for the respomse time holds even if the service

2

rate is fixed or if it is strictly load dependent (infinite servers). T
Although it will not be proven here, the equation for the marginal pN

probability also holds. The reason for this is that both equations are .'_:-.‘\"-
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intermediate steps in the proof of the arrival theorem. More precisely, i \.
' the equations for multiple chain load dependent service centers (the -
by,

- Faeityt

most complex case) are derived first and all the others from these., -?"?

AR

oi'- A

The vtilization then of s 1imited load dependent sexrvice conter is : J

py(V) = § min(ky,my) Py(kglV) / my . (7.195) N
k;=0 N,

L]
2

2P
Pd

This follows from the fact that when service center i contains ti

N A

;/
%3

customers, ['“(ki"i)”'i is the capacity of the service center that

[ W N
s
Ay
*

is being used,

5
e

’

The procedure will dbe illustrated by the network iam Figure 7.1. A _

‘h’:‘

3

description of the service centers is given in Table 7.2. It follows

QAL NS YW
VY
P

from the routing probabilities in Figure 7.1 that if ey is assigned the

value of one, then R Y T 0.5. Thus,

T3(V) = (03101) T, (V) = (1) Tl(V) for all Vv,

e 7
CAl's

Ty

PP

[N

)

NS
b

e e = o s S
' el de S e Ly - . . .

It follows from the service rates of the individual servers that:

A

%

”» [ ]

~N -

[ ] [ ]
(] N

- » ¥

e :‘:"h/‘o
R
s '.>1’J-‘

4 for ki-l
'3(ki) =
2 for ki)l .

I'-"f;l'}"
5’:.':

The following are the calculations for v=1, v=2, and v=3:
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Figure 7.1 Example of a Load Dependent Network,
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Tadble 7.2 Description of Service Centers ia Figure 7.1.
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Calculations for w=1 :

R,(1) = (2)«1) = 2

(1) = 1
R3(1) = (4) P3(0l0) = (4) (1) = 4

(0.5) (1)
) = Gm@ s M + 0.0 - 0128

T;(1) = 0.125

L, (1) = (0.125) (2) = 0.25
L,(1) = (0.250) (1) = 0.25

Ly(1) = (0.125) (4) = 0.50
P3(111) = (4) (0.125) Py(0l0) = 0.5

Py(0l1) = 1 - P(1l1) = 0.5 .

Calculations for v=2 :

R (2) = (2) (1.25) = 2.5

Ry(2) = 1
Ry(2) = (1)(4) Pg(0l1) + (2)(2) Py(1]1) = 4
(0.5) (2)
T = = L ]
1(2) (0.5)(2.5) + (1)(1) + (0.5)(4) 0.235

T,(2) = (2) (0.235) = 0.471

Ty(2)

(1) (0.235) = 0,235

e e
v

-
n!
)
L 1)
|

7,

Ay
(]

P
?'.:’ B

TR Ry
v dd
PP {5"{: \’:’ ::’d
a ot SN2

XX

5

L o

TR

rN LR

x;:;&
Py

R N
r
N




RN R Y %

L, (2)
L,(2)

Ly(2)

Py(1]2)
P3(212)

Py(0l2)

e g a8 4.4 “a e 8°a A'2 88,82 £'8. 0% $"2 P2 %2 2 .8 0 4%x 82 8%2 £%2 8%2 2% A'a 80, %, A%. a%a 2%

(0.235) (2.5) = 0.588
(0.471) (1) = 0.471

(0.235) (4) = 0.940

= (4) (0.235) P4(0l1) = 0.470
= (2) (0.235) Py(111) = 0.235

=1 - (0.470 + 0.235) = 0,295 .

Calculations for v=3

R,(3) =
R,(3)
Ry(3) =

T, (3)

Ty(3) =

Ty(3) =

L,(3) =

L,(3) =

Ly(3) =

P4(113)
P,(213)

P3(313)

P, (013)

(2) (1.588) = 3.176
1

(1)(4) P3(02) + (2)(2) Py(1]2) + (3)(2) Py(2[2) = 4.470

(0.5) (3)

(0.5)(3.176) * (L) (1) + (0.5)(a.470) ~ °0-311

(2) (0.311) = 0.622

(1) (0.311) = 0,311

(0.311) (3.176) = 0.988
(0.622) (1) = 0.622

(0.311) (4.470) = 1.390

(4)(0.311)(0.295) = 0.367

(2)(0.311)(0.470) = 0.292

(2)(0.311)(0.235) = 0.146

1 - (0.367 + 0.292 + 0.146) = 0.195
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fos e ® ¢ { o B [ 3 T, oty gt g WAl ad el FOTUSTRIRNONOOX] TR RN "0 6,14 ISy Q' La'h v‘[‘.*'. ‘.‘-‘-‘ TWTS vy XD

A
N
&
v
p1(3) = (0.311) (2) = 0.622 N
$%F
p3(3) = [(1)(0.377) + (2)(0.292) + (2)(0.146)1/2 = 0.622 . ﬁ)
[} h
. ~
e
As before, the throughput theorem can be used to determine the AL
EASH
norsalizing constant: :'.:j-.j'_
RN
R
"..-'q’-
G(0) =1, RU
(1)(0.5) R
G =35 "4 N
* o
A
oy
)
o.s (]
G(2) = -(-;——);35—)' = 8.5 AT
. _ .':f-;'i-'.
"s"'-‘,
Y
. o.s -\-’,'
G(3) = _(_S_SL(__l = 13,667 . :."‘-.';-\.
00311 ~:.~:r'.'
R,
BN
The calculations for load dependent service centers not only ~:4-:'_._r_
.
roequire additional work, but also require additional storage to compute ::::
"df'\{
AL
the marginal probabilities. e
A - rJ
AR
vy
7.2.5 L Independent — Multi n ~ Closed Networks R

%

The single chain MVA algorithm described in the previous two

s,

"~

sections generalizes directly into a multiple chain algorithm, For

' a
;l -

Networks with load independent or type IS service centers, the '.
FN \t "
recurrence equations are: -
:_\',-. AN
._\'_\:_:.
83, [1 +#L,(V-1,)] for i FCFS, PS or LCFSPR 2o
ij i j o
Ry (V) =
‘1.’ for i Is (7.16) .':.\:\:;
i
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Tij(V) = o535 vy / S o1y Ryy(V) (7.17)
- i=1
Ly (V) = T, (V) Ry (D) (1.18)
Li(V) = S Lij(v) . (7.19)
i=1

The relationships expressed by the equations should be obvious
from the earlier discussion with the possible exception of the equation
for response time. That is, ome might suspect that since customers in
different chains may have different service rates if the discipline is
PS or LCFSPR, the equations should somehow account for this, However,
the equation is correct as stated, and the authors of the algorithm
simply state that 535 Ll(v-lj) is a congestion factor caused by the
other customers., In the case of FCFS service centers, it is required
that 811"819™ o0 "8,y since NVA is only valid for networks that have
product form solutioms, A program—like definition of the algorithm is
given in Table 7.3. Notice that the number of iterations has increased
significantly due to multiple chains, As before, utilization can be

calculated at any point in the procedure by the equations:

plj(v) - ‘1.’ Tij(V) » (7.20)
and
pi(V) = gﬂij(V) . (7.21)
j=1
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Begin {(initialization

e 1
S
b

2
gt

a

for i:=1 to-N do L,(0) := 0

Ly

l.l.

&"':.ﬁ-'t
[N 4
W A L4

for vlz-o to Vl do
for v2:-0 to V2 do

for vJ:-O to VJ do

.ﬁ
A
.

4
P
N}'r"'
Xy

&

begin {main body])

N A
P Ay
LY

AN

PR l‘.t' [
‘l'
NI

)

13.
2,

h

Pl s

1 ]
It

v = (vl.vz.....vj)

for j:=1 to J do

P AR

L5 5
Pk

../I‘.,‘r!'

PP S

[y l.

Y
%

for i:=1 to N do {response time]

lij (') =

5
p)
.

.
e

o,

311 for 1 I8 _

{throughput])

le(v) = 61§ vy / g °ij Rij(')
i=1

e
v
)

.‘.: P
i

>
F
¢

for i:=2 to N do

]

]

'-I\"-
S

i?f!
- -'s
Y

for i:=1 to N do {chain gueue length}

."-:':’J
L[}

i
4 -

%
s
4

(RN
-2,

7’

4
Y

end {for j)

./'-

R
4_,-’

7,
Sy
4 1
5

for i:=1 to N do {queune length}

'

Li(v) - s Lij(v)
j=1
end end end {for vl.vz.....vJ}

{calculate utilization] Deivava
XN

End. uh‘:- :-\_:.
i

Table 7.3 MVA Algorithm for Multiple Cbain Load Independent Networks, ;uit*\f
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In order to illustrate the multiple chain procedure, consider the

network in Figure 7.2 and the description of the service centers given

in Table 7.4. .lui;ning ©3,1 = 03,2 = 1 yields: :\:g‘
t

.1.1 = 0.5 ‘1.2 = 0.5 ‘.._‘j:i’

.2’1 = 0,3 .2'2 = 0.5 ('::, %Y
>

.3.2 =1, “:\?

Thus,

1

XX

:’ﬁ

A
2o d s
R L, R NS0

W
P4
Y

a J
X

for all V,

NP
s

It follow from Table 7.4 that :

'1.1 = 2 ‘1'2 = 2

The following are the calculations up to V=(2,2) : PR

Calculations for v = (0,1) B

R, ,(0,1) = 2 R

¥ 32'2(001) 2 .':"..

2

R3.2(0.1)

s - (0.5) (1) . RS
Ty,2(0.1) (0.5)(2)+(0.5)(2)+(1)(2) 0.125 s

: Ty,5(0,1) = (2) Ty ,(0,1) = 0.250 PN

._.
X
Z

Y
5

L 221

- -
" RS W ¥ % 4
‘ L}
AL
PN

WP Y R R A Tl A S T N e T T S S N I I LI Y NP R e . L N T S S T Y S Y A P Y ot
) R IV R I S g A R M A e T P TR L B U S Sl T . AR S R P T T S L L
DY) ' B A A Nt N A N A A A A AP b AN . tLoet et . .
..l"'l‘.e’.‘!% ,.t:'.'..‘ '-’\ v ._'I -"‘-(’ o e e, - O RN



__ CHAIN1 QO
- :ﬁﬁ

\
-4

= ™

CHAIN 2

F-
Figure 7.2 Load Independent, Nultiple Chaim Closed Netwosk. todl

Service Number of Service Server Server
Center Servers Discipline Rate By1 Rate B2
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2 1 PS 0.25 0.5
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o
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Table 7.4 Description of Service Centers in Figure 7.2,
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3k 2
Ly,5(0,1) = (0.125) (2) = 0.25 = Ly(0,1) R
0,1) =_(0.125) (2) = 0.25 = L,(0,1 -
"‘2,2( ) (._ ) (2) 3(0,1) ; :?.2
'ﬁ:‘:""
Calculations for v = (0,2) : B
Ry 5(0,2) = (2) (1.25) = 2.5 i&:’é}:ﬁ
O
Ry 2(0,2) = (2) (1.25) = 2.5 i by
i t
%.2(012) = 2 »J..!:l
Y ]
(0.5) (2) . 0N
11,2002 = GG .« | 322 A
.l”
Ty, 2(0,2) = (1) Ty ,(0,1) = 0.222 K
= ‘.'-"-.-:v'*
Ty 5(0,2) = (2) Ty ,(0,1) = 0.444 a:i;::‘{
& _-‘..'r
S
Ly 5(0,2) = (0.222) (2.5) = 0.556 = L,(0,2) LN
ihtod
Ly 5(0,2) = (0.222) (2.5) = 0.556 = L,(0,2) . I
Ly 2(0,2) = (0.444) (2) = 0.888 = Ly(0,2) . \-;’:.:
::::r'\"
Calculations for v = (1,0) NG
PSR
31.1(150) = (2) (1) =2 _‘::_:..\
.-‘_:\:
R, 1(1,0) = (4) (1) = 4 E\'ﬁzf-:
Ry 4(1,0) = 1 ’
(0.5) (2)
11,119 = @, o @ - 013
Ty 1(1,0) = 0,125
T3, ;(1,0) = 0.250
223




Ly 1(1,0) = (0.125) (2) = 0.25 = Ly(1,0)

Ly, 1(1,0) = (0.125) (4) = 0.50 = Ly(1,0)

L3'1(1.0) = (0.25) (1) = 0.25 = L4(1,0) .

Calculations for v = (1,1)

R 4(1,1)
Ry 4(1,1)
Ry 4(1,1)

Ty ,(1,1) =

Tz.l(lcl)

Ty,1(1,1)

L;,,(1.1)

Ly 4(1,1)
Ly 4(1,1)

31,2(1’1)

Ry ,(1,1)
Ry 1(1,1)

Ty,5(1,1)

T,,5(1,1)

Ty 5(1,1)

= (2) (1.25) = 2.5
= (4) (1.25) = 5

=1

(0.5) (1)

(0.5)(2.5)+(0.5)(5)+(1)(1)

0.105

0.210

= (0.105) (2.5) = (0.263)
= (0.105) (5) = (0.526)

= (0.210) (1) = (0.210)

= (2) (1.25) = 2.5
= (2) (1.5) =3

= 2

(0.5) (1)

" 10.5)(2.5)+(0.5) (3)+(1) (2)

= 0.108

= 0,211

= 0,105

= 0.105

»

NN Y]
. T e

\.'_'.'.-."'-
%iﬁ:bﬁ}'-ﬁ
l' l‘ ":

v,

< ",
4 '-'-
e ]
PO FON

+

o
.'
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Ly 5(1.1)

Ly, 5(1,1)
Ls.z(lnl)

Ll(lnl) =
Lz(lnl) =
Ls(l.l) -

= (0.105) (2.5) = 0.263
= (0.105) (3) = 0.315

= (0.211) (2) = 0.422

(0.263) + (0.263) = 0.526
(0.526) + (0.315) = 0.841

(0.210) + (0.422) = 0.632 .

Calculations for v = (1,2) :

Ry 1(1,2)
R, 4(1,2)
Ry 4(1,2)

Ty,4(1,2)

T, 1(1,2)

Ty, 1(1,2)

Ly,1(1.2)

Ly,1(1,2)
Ly 1(1,2)

Ry ,(1,2)

R, 5(1,2)
Rs'z(lpz)

= (2) (1.556) = 3.112

(4) (1.556) = 6.224
=1
(0.5) (1)

= 0,088

= 0.176

= (0.088) (3.112) = 0.274

= (0.088) (6.224) = 0.548

= (0.176) (1) = 0.176

= (2) (1.526) = 3,052

= (2) (1.841) = 3,682

=2
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b b Ll g K € dv g i B0 98 et pEo At A%, R¥a AP At Ty ad gt - O 0
¥ LN U ARSI ¥ oa ek Y, vaf vap Yab > - (i i o8 N T ATEN I TS 'o|’|'

11,212 = 1 575.052)+(0. 9 (3. 68+ (D) () 0186 Pty

Tz.z(lgz) = 0.186

0.373 N

Ty ,(1,2)

W)
ar
Ly, 5(1,2) = (0.186) (3.052) = 0,568 PBQﬁN:

L, 5(1,2)
Ly, 5(1,2)

0.68S s

N
0.745 P'j R

(0.186) (3.682)

(0.373) (2)

o
0.842 Q:»::::

Ly(1,2) = (0.274) + (0.568)

L,(1,2) = (0.548) + (0.685) = 1.233

L3(1,2) = (0.176) + (0.745) = 0.921 . -

Calculations for v= (2,0) :

1
L]

'
1
[l

']

(2) (1.25) = 2.5 - i

R, ,1(2,0)

Ry 1(2,0)
Ry ;(2.0)

LA

-
2 »

vy
i)

[ ]
AN

(4) (1.5) = 6 a

1 n

£ ]

"_I'.-‘

g0

Rl

v
7 <

"

(0.5) (2) .
(0.5)(2.5)+(0. ) (6)+(1) (1)

4
L s

0.190

%
L 84 e

Ty ,(2,0) =

v
D

L
b

T,,1(2.0) = 0,190

’\:/"n""
’;v’(.’_.
ppls
YN

Ts.l(Zuo) = 0,381 -':'-'._:‘

Ly 1(2,0) = (0.190) (2.5) = 0.475 = L;(2,0)
Ly, 1(2,0) = (0.190) (6) =~ 1.143 = L,(2,0) RuANY

Ly 1(2,0) = (0.381) (1) = 0.381 = Ly(2,0) . RS,

RNESREGAY
226 AN,




Calculations for v = (2,1) :
R;,1(2.1) =(2) (1.526) = 3.052

R, 4(2,1)
.2.1(2'1) = 1

(4) (1.841) = 7.364

(0.5) (2)
T1,102.1) (0.5)(3.052)+(0.5)(7.364)+(1)(1) 0.161

T,,1(2.1) = 0.161

Ty, 4(2,1) = 0.322

Ly,1(2,1) = (0.161) (3.052) = 0.492
Ly, 1(2,1) = (0.161) (7.364) = 1.186

Ly 1(2,1) = (0.322) (1) = 0.322

Ry 5(2,1) = (2) (1.475) = 2,950
Ry 5(2,1) = (2) (2.143) = 4.286
(0.5) (1)

71,202, = (0.5)(2.950)+(0.5)(4.286)+ (D (%) _ 2%

T, 2(2.1) = 0.089

Ty 5(2,1) = 0.178

Ly,5(2,1) = (0.089) (2.950) = 0.263
Ly 5(2,1) = (0.089) (4.286) = 0.381

L3 5(2,1) = (0.178) (1) = 0.356
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L,(2,1) = 0.491 + 0,263 = 0.754
L,(2,1) = 1,186 + 0,381 = 1.567

Ly(2,1) = 0.322 + 0.356 = 0.678 .

Caloulations for v = (2,2) :

B ;(2,2) = (2) (1.842) = 3.684

R, 1(2,2)
Ry 4(2,2)

(4) (2.233) = 8.932

1

(0.5) (2)
(0.5)(3.684)+(0.5)(8.932)+(1)(1)

Ty, 4(2.2) =

T,,1(2,2) = 0.137

Ty,1(2.2) = 0.274

Ly,1(2,2) = (0.137) (3.684) = 0.504
Ly, ;(2,2) = (0.137) (8.932) = 1.222

L3, 4(2,2) = (0.274) (1) = 0.274

31'2(2.2) = (2) (1.754) = 3,508
l2'2(202) - (2) (20561) - 5-134

33‘2)(2.2) =2

(0.5) (2)

T,2(2:2) = (0.5)(3.508)+(0.5)(5.134)+(1)(2)

T, 2(2,2) = 0.158

Ty 2(2,2) = 0.316
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Ly 2(2,2) = (0.158) (3.508) = 0.555
L, 2(2,2) = (0:188) (5.134) = 0.812

L;(2,2) = 0.504 + 0.555 = 1.059
Ly(2,2) = 1.222 + 0.812 = 2,034

L3(2,2) = 0.274 + 0.633 = 0,907 .

Utilization Calculations :

py,1(2:2) = (2) (0.137) = 0.274

p3 1(2,2) = 0

(2) (0.158)

91'2(2.2) 0.316

(2) (0.158)

92.2(212) 0.316

93.2(2o2) 0

p1(2,2) = 0.274 + 0,316 = 0.590

p2(2,2) = 0,548 + 0.316 = 0.864

p3(2,2) = 0 .

Normalizing Constant Calculations:

(1) (0.5) -

G(0,1) = 0.128 4
G(0,2) = iil-ig;il = 9,009
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(1) (0.5) _
05125

6(1,0) = 4

(4) (0.5)
G(1,1) W 19.048

(9.009) (0.5)
6(1,2) 0.088 51.188

(4) (0.5)
G(2,0) —330—— 10.526

G(2,1) = (19.048) (0.5) _ 59,1552

0.161

(51.188) (0.5)
G(2,2) 0.137 186.818 .

This problem demonstrates the primary reason why there are no
examples of MVA in open literature, and very few examples of the other
algorithms, Simply put, they are just too long! In addition, the
calculations are iterative in nature and best dome by a computer. The
problem is that if ome does not understand how to apply the algorithm,
then they would not be able to write a computer program to do the
calculations,

Appendix B is the listing of a computer program for multiple
chain, load independent, closed networks. The code was written in Turbo
Pascal, and is for an IBM PC or compatible computer. The program
assumes that there is only one class of customers per chain, Therefore,

if there are multiple classes per chain, the users must merge these
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into an equivalent class (See Chspter 6, Section 6.5.3 where customers N ,¥‘.
are distingpnished according to chains rather than class). In addition, Y]
' 3
- N
the user must caloulate the relative throughputs and supply them to the :._: ‘
program. It is usually trivial to find the relative throughputs, and it : .::'".'j
wvas felt that this would be better than prompting the user for the XN
o
routing probabilities (there are always more routing probabilities than \":E\
‘-_\_‘. :
throughputs). S!:!;:,
Y
7.2.6 Load Dependent - MNultiple Chajp — Closed Networks ::F“-ﬁ
A
As before, for service centers with limited load dependent service }_f-::-:’
A NN
’ i
rates, the equation for the response time is in terms of marginal L
PICOH ¢
probabilities. More precisely, - :.'.::3,"-':.
]
Iyl el
Ry (V) = g ky s335(k3) Py(xg-1lv-1y) , (7.22) PSS
k=1 ey
Y
o
where |V| = V;4Vy+ *** +Vy, and o
"._!:._v'.
r AN
1 for k;=0 and |V|=0 b
e
o
\-:
Py(k;1lv) =< 5 83j(k3) T35(V) Py(ky-1|V-1) for k350 and [VI>0 e
j=1 N
NN
Iz! RN
L 1 - § Pi(k;(V) for k;=0 and [V]>0. PG
W
ky=1 (7.23) PR
Fall N d
Also as before, these same recursive equations apply to service £ . _
r:'_-n.\_.l-;
centers that are load independent. In order to illustrate their use, a ::"::\t
Oy A,
second server will be added to service center ome of the previous :\:‘.f
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multiple chain example and the problem rewvorked. The input parameters

for the model are:

5,1 " 0.5 °3,2 = 0.5
.2’1 - 0.5 02'2 = 0.5
°3,1 =1 °3,2 =1
- 2 for ki-l 2 for ki-l
s (k;) = s (k;) =
’ i .
1.2 1 for ki)l 1.2™H 1 for k1>1
'2'2 = 4 '2.2 = 2
*3,2 =1 *3,2 = 2 Y
SN LY
L
= A
T WY
TZ,Z(V) b (02.2/01'2) Tl.z(V) = (1) Tl.z(V) ;—;_:;J.
R,
T3.2(V) - (.3'2/.1'2) Tl'z(V) = (2) Tl.z(V) . ,::-,‘_';-;.
'I:.":-)'
Tt
,‘f\'}\.":
Calculations for v = (0,1) : =
-'.:J‘.'
Ry,2(0,1) = (1) sy 5(1) Py(0]0,0) BRSO
NI
82’2(0.1) = (2) (1) = 2
n3.2(0,1) - 2
(0.5) (1)
T 0,1) = = 0,125
1,2(0.1) (0.5)(2) + (0.5)(2) + (1)(2)
r2.2(0.1) = (1) (0,125) = 0,125
T3.3(0.1) = (2) (0.125) = 0,250
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Ly 5(0,1) = (0.125) (2) = 0.25 = L (0,1)
L, 1(0,1) = (0:125) (2) = 0.25 = L,(0,1)

Ly,1(0,1) = (0.250) (2) = 0.50 = Ly(0,1)
P;(110,1) = 55 ,(1) Ty ,(0,1) P;(0l0,0)

= (2) (0.125) (1) = 0.25
P,(0l0,1) = 1 - 0.25 = 0.75.

Calculations for v = (0,2) :

Ry 5(0,2) = (1) sy 5(1) Py(0l0,1) + (2) s; ,(2) Py(1l0,1)

(1) (2) (0.75) + (2) (1) (0.25) = 2

Ry 2(0,2) = (2) (1.25) = 2.5
Rs . 2 ( 0 » 2 ) - )
(0.5) (2)
T . = = 0,
1,29 = T m T . a.n @ - 2
Ty,2(0,2) = (1) (0.235) = 0.235
T3,5(0,2) = (2) (0.235) = 0.474
Ly,2(0,2) = (0.235) (2) = 0.471 = L,(0,2)
Ly 5(0,2) = (0.235) (2.5) = 0.588 = L,(0,2)
L3 5(0,2) = (0.471) (2) = 0.941 = L3(0,2)
P;(110,2) = s; (1) T; ,(0,2) Py(0l0,1)
= (1) (0.235) (0.25) = 0.353
P,(2(0,2) = s; 5(2) Ty ,(0,2) Py(1l0,1)
= (1) (0.235) (0.25) = 0.059
P;(0]0,2) = 1 - (0.353 + 0.059) = 0.588 .
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Calculations for v = (1,0) : - m
- bﬂﬁﬂb’
Ry 1(1,0) = (1) s, ,(1) P,(0l0,0) RIS

= (1) (2) (1) = 2

EI(
o

32'1(150) = (4) (1) = 4 ::;itﬁﬂ
Ry ;(1,0) = 1 RN
(0.5) (1) RN

1,19 " T m os@ - 1 ‘i
O
ENCR

T,,1(1,0) = (1) (0.125) = 0.125 i)
RN

T3,1(1,0) = (2) (0.125) = 0.250 G

Ly, 1(1,0) = (0,125) (2) = 0.25 = L,(1,0) -

Ly 1(1,0) = (0.125) (4) = 0.50 = Ly(1,0)

L3.1(1’0) = (0.250) (1) = 0,25 = Ls(laO)

P,(111,0) = s; ; Ty 1(1,0) P,(0]0,0)
= (2) (0.125) (1) = 0.25

P,(0l1,0) = 1 - 0.25 = 0.75 .

Calculations for v = (1,1)

Ry,1(1,1) = (1) 85 ,(1) Py(0l0,1) + (2) sy ,(2) Py(1l0,1)
= (1) (2) (0.75) + (2) (1) (0.25) =2
Ry 1(1,1) = (4) (1.25) = 5

Ry 4(1,1) = 1
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: Ty,1(1,1)
: T, 1(1,1)
’ T3,;(1.1)
: Ly,q(1,1)
&
g Ly,4(1,1)
; Ly, 1(1,1)
s
i}
L}
4
\ R,2(1.1)
A B,21.1)
p Ry, ,(1,1)
1Y
! Ty 5(1,1)
!,
A
" Ty, 5(1,1)
f T3,,(1,1)
N
)
‘ L1.2(151)
) L,,,(1,1)
0
E L,(1,1) =
, L,(1,1) =
, Ly(1,1) =
k)
R
L]
N

A A AT AL AN A AESIE A el s A AT, 1L Sl T S )
A . - N ¥

EIL B Y LI LW LI LPW LA U LT U AW LN O Tt

. (0.5) (1) - 0.111
T(0,8)(2) + (0.5)(5) +(1)(1) *

= (1) (0.111)

0.111

= (2) (0.111) = 0.222

= (0.111) (2)

0.222

= (0.111) (%)

0.555

= (0.222) (1)

0,222

= (1) 8y, ,(1) Pj(011,0) + (2) s; ,(2) P;(1]1,0)
= (1)(2)(0.75) + (2)(1)(0.25) = 2
= (2) (1.5) = 3

=2

. (0.5)(1) - 0111
(0.5)(2) + (0.5)(3) +(1)(2) *

= (1) (0.111) = 0.111

= (2) (0.111)

0.222

= (0.111) (2)

0.222

= (0.111) (3)

0.333

= (0.222) (2) = 0.444

0.222 + 0.222

0.444

0.555 + 0,333

0.888

0.222 + 0.444

0.666
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Py(1l1,1) = sy 1(1) Ty 1(1,1) P(0]0,1) + 85 ,(1) Ty 5(1,1) Py(0l1,0) e
= 2)(0.111)(0.75) + (2)(0.111)(0.75) = 0.333 oo
- )
P(211,1) = 8 1(2) Ty 1(1,1) By(110,1) + 8y 5(2) Ty 5(1,1) Py(1]1,0) A
Lo
= (1)(0.111)(0.25) + (1)(0.111)(0.25) = 0.056 5
Py(0l1,1) = 1 - (0.333 + 0.056) = 0.611 . oy,
)
N
L] I’.
i,
Calculations for v = (1,2) : . 2
Ry,1(1,2) = (1) sy ,(1) Py(0[0,2) + (2) sy 4(2) Py(1]0,2) W
+(3) 8y 1(3) Py(210,2) o
Y
= (1)(2)(0.588) + (2)(1)(0.353) + (3)(1)(0.059) = 2.059 o
Ry,1(1,2) = (4) (1.588) = 6.352 oy
- .\{"
Ry 1(1,2) = 1 A
Ry
(0.5) (1) el
1,102 ° G5 G059 + (0.51(6.359) + @ - 0% :
: NN
‘.‘\'J' ~
T;,1(1,2) = (2) (0.096) = 0.192 s
N
Ly,1(1,2) = (0.096) (2.059) = 0.198 Ry
L, 1(1,2) = (0.096) (6.352) = 0.610 :l'.ff
'1 ” ) [ . :‘:ﬁ‘-
L3 4(1,2) = (0.192) (1) = 0.192 o
i
l. h '.
Ry,2(1,2) = (1) sy (1) Py(0l1,1) + (2] sy ,(2) Py(1l1,1) ,;;\F '
+(3) 85 ,(3) Pj(211,1) F i
= (1)(2)(0.611) + (2)(1)(0.333) + (3)(1)(0.056) = 2,056 A
-_s:-}'\
Ry 2(1,2) = (2)(1.888) = 3.776 NI
' RS
R3.2(102) =2 .:i::}- \
B
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- (0.5)(2)
T1,2(1:2) 10.5)(2.056) + (0.9G.776) + @~ 2%

T,,2(1.2) = (1) (2.03) = 0.203

Ty,3(1.2) = (2) (2.03) = 0.407

L1’2(1.2) (0.203) (2.056) = 0.417

L, 5(1,2)
Ly 5(1,2)

(0.203) (3.776) = 0.767

(0.407) (2) = 0.814

Ly(1,2) = 0.198 + 0.417 = 0.615
L,(1,2) = 0.610 + 0.767 = 1.377

Ly(1,2) = 0,192 + 0.814 = 1,006

P, (111,2)

$1,1(1) Ty, 1(1,2) Py(010,2) + sy (1) Ty ,(1,2) Py(0l1,1)

(2)(0.096) (0.588) + (2)(.203)(0.611) = 0.361

P(211,2) = sy 1(2) Ty 4(1,2) Py(1]0,2) + 85 ,(2) Ty 5(1,2) Py(1l1,1)

(1)(0.096)(0.535) + (1)(.203)(0.333) = 0.101

Py(311,2) = sy ,(3) Ty 4(1,2) Py(2[0,2) + sy 5(3) Ty 5(1,2) Py(211,1)

(1)(0.096)(0.059) + (1)(.203)(0.056) = 0.017

Py(0l1,2) = 1 - (0.361 + 0.101 + 0.017) = 0.521 ,

Calculations for v=(2,0)

Ry,1(2,0) = (1) sy 4(1) Py(0l1,0) + (2) 3, 4(2) Py(1]1,0)
= (1)(2)(0.75) + (2)(1)(0.25) = 2

Ry, ;(2,0) = (4)(1.5) = 6

R3'1(2.0) =1
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il (0.5)(2)

11,129 2 @0, H (e - 020
T3.1(2.°) = (2)(0.20) - 0.40

Ly 1(2,0) = (0.20)(2) = 0.40 = Ly (2,0)

Ly 1(2,0) = (0.20)(6) = 1.20 = Ly(2,0)

Ly, 1(2,0) = (0.40)(1) = 0.40 = Ly(2,0)

P;(112,0) = sy ;(1) T, ,(2,0) Py(0l1,0)
= (2)(0.20)(0.75) = 0.300

P,(212,0) = sy ;(1) T, 4(2,0) Py(1]1,0)
= (1)(0.20)(0.25) = 0.050

P,(0{2,0) = 1 -(0.300 + 0.050) = 0.650 .

Caloulations for wv=(2,1)
Ry,1(2,1) = (1) s; 4(1) Py(0l1,1) + (2) sy ,(2) Py(1l1,1)
+(3) 85 4(3) Py(211,1)

= (1)(2)(0.611) + (2)(1)(0.333) + (3)(1)(0.056) = 2.056

Ry,1(2,1) = (4)(1.888) = 7,552
Rg.l(zol) = 1

(0.5)(2)
11,121 = GG ese+.n . snmm - 017

Ty,1(2,1) = (2) (0.172) = 0.34$

238




Ll.l(z.l) = (0.172) (2.056) = 0,354

Ly,1(2,1) = (0.172) (7.552) = 1.299

Ly 4(2,1)

R ,(2,1)

Ry 5(2,1)
Ry 5(2,1)

+

Ty 1(2,1) =

Ty, 5(2.1)

Ty 5(2,1)

Ly ,(2.1)

Ly 5(2,1)
Ly (2,1)

L,(2,1) =
Ly(2,1) =
L3(211) ._

P,(111,2)

Py(2]2,1)

0.
1.

0.

(0.345) (1) = 0.345

(1) 85,,(1) Py(0[2,0) + (2) sy ,(2) Py(1]2,0)

(3) 85 ,(3) Py(2]2,0)

(1)(2)(0.650) + (2)(1)(0.300) +(3)(1)(0.050) = 2,050
(2) (2.20) = 4.40

2

(0.5)(1)

(0.5)(2.050)+(0.5)(4.40)+(1)(2) = (0,096

(1) (0.096) = 0.096 -

(2) (0.096) = 0.191

(0.096) (2.050) = 0.196 .
(0.096) (4.40) = 0.421

(0.191) (2) = 0.383

354 + 0,196 = 0.550
299 + 0.421 = 1.720

345 + 0.383 = 0.728

83,1(1) Ty 1(2,1) Py(0l1,1) + 85 ,(2) Ty ,(2,1) P;(0]2,0)
(2)(0.172)(0.333) + (1)(0.096)(0.650) = 0.335
$1,1(2) Ty 1(2,1) Pi1l1,1) + 55 5(2) Ty ,(2,1) Py(1l2,0)

(1)(0.172)(0.333) + (1)(0.096)(0.300) = 0.086
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P1(312,1) = oy 1(3) Ty 4(2,1) Py(211,1) + 85 2(3) Ty 5(2.1) Py(212,0)
T = (1)(0.172)(0.056) + (1)(0.096)(0.050) = 0.014

P;(0]2,1) = 1 -(0.335 + 0.0866 + 0.014) = 0.565 .

Calculations for wv=(2,2)

¢ Ry,1(2,2) = (1) sy ,(1) Py(0l1,2) + (2) sy 4(2) Py(1]1,2)

+

(3) 89,71(3) Py(211,2) + (4) s, 1(4) Py(311,2)

(1)(2)(0.521)+(2)(1)(0.361)+(3) (1) (0.101)+(4) (1) (0.17)

) = 2.135

R;,;(2.2)

(4) (2.377) = 9.508

*5t

E 13.1(2.2) =1 - ;:;

) ‘d‘::.

' (0.5)(2) 2
11,1022 = GHGnwe.s .5+ -

. T, 1(2,2) = (1) (0.147) = 0.147

D) »

1

g Ty 1(2,2) = (2) (0.147) = 0.293

)

: Ly 1(2,2) = (0.147) (2.135) = 0.313

i

v Ly, 1(2,2) = (0.147) (9.508) = 1.394

b
L3,1(2,2) = (0.293) (1) = 0.293

-

: Ry 5(2,2) = (1) 85 5(1) Py(012,1) + (2) sy ,(2) Py(1l2,1)

)

¢

= (3) 8y 5(3) Py(212,1) + (4) 85 ,(4) Py(3]2,1)
Ry 5(2,2) = (2)(2.720) = 5.440

-

R3.2(2.2) = 2

> g - -
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%

%

:;:.‘:':?

- (0.5)(2) - Ny

1,222 ® e sose.n e @ - 0 N

- s Qv "
N 0
Ty,2(2,2) = (1) (0.173) = 0.173 Pl
D

Ty 2(2,2) = (2) (0.173) = 0.346 N
e
L, 5(2,2) = (0.173) (2.114) = 0.366 p §$
» X
Ly 2(2,2) = (0.173) (5.440) = 0.942 o
Ly, 2(2,2) = (0.313) (2) = 0.692 s s
> e

%

L,(2,2) = 0.313 + 0.366 = 0.679 NN
[ §

L,(2,2) = 1.394 + 0.942 = 2.336 : e
- F AT Y
L3(2,2) = 0.293 + 0,692 = 0,985 - o
R
Py(112,2) = sy 1(1) Ty 4(2,2) Py(011,2) + 8y (1) Ty 5(2,2) Py(012,1) E;&;;j
= (2)(0.147)(0.521) + (2)(0.173)(0.565) = 0.349 —

W

P1(212,2) = sy 1(2) Ty 1(2,2) Py(111.2) + sy 5(2) Ty ,(2,2) By(112,1) Sy

(1)(0.147)(0.361) + (1)(0.173)(0.335) = 0.111

"
- a b
§;I
13 -
s

P1(312,2) = sy 1(3) Ty 41(2,2) Py(211,2) + 8 ,(3) Ty 5(2,2) P;(2]2,1) N
AN
= (1)(0.147)(0.101) + (1)(0.173)(0.086) = 0.030 355? )
AN,
Py(412,2) = sy 1(4) Ty 1(2,2) Py(311,2) + &) 5(4) Ty 5(2,2) Py(3l2,1) gﬁ;b;;
-= (1)(0,147)(0.017) + (1)(0.173)(0.014) = 0.00S -
SeTN
P,(412,2) = 1 - (0.349 + 0.111 + 0.030 + 0.005) = 0.505 . PN,
2;5;::;:;}-;’
Utilization : ?ii{
AR
p1(2,2) = [(1)(0.349)+(2)(0.111)+(3)(0.030)+(4)(0.005)]/2 = 0.341 TN
"\f\".
$2(2,2) = (4)(0.147) + (2)(0,173) = 0,934 PN
hoseT
93(232) =0. ;-.\ﬁ
Py
oy
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Normalizing Constants:

€1)(0.5) .
0.125

6(0,1) = 4

(4)(0.5)

0.235 Ssu

G(0,2) =

(1)00.5) _
0.125

6(1,0) = 4

(4)(0.5)

0.111 . 18.018

G(1,1) =

(8.511)(0.5)
0.096

6(1,2) = = 44.328

10

02,0 = U103

(18.018)(0.5)
0.172

= 52,378

6(2,1) =

(44.328) (0.5)
0.147

= 150.776 .

G(2,2) =

As previously stated, the examples in this chapter are believed to
be the only examples of MVA in open literature, In view of the length
of this example, it should not be surprising that it is believed to be

the only multiple chain, load dependent example-period,
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7.3 Mixed Networks
A mixed netwvork is one with both open and closed chains., Customers
in the closed .ohains and their service requirement, do not affect the
stability of the network [RRIS75], That is, a mized network is stable,
if and only if, pi.opon <1, for all 1 other than IS service centers
(’1.opon is the utilization of sexvice center i due to the open chain
customers)., The open and closed chains have a surprisingly simple and
limited impact on each other. In fact, if the mean arrival rates of the
open chains are constant and all service rates are load independent,
then the response time is given by
844 1+ L,(v-le
1

R, (V) =
1 ~ Pi,open

where Li(v-lj) is the mean number of closed chain customers when the
population vector is V-IJ [ZAHO81]. Similarly, the response time for

open chains is

1

~ Pj,open

The reader is referred to the earlier reference for a proof of these
two equations, Note that it is omly necessary to compute the open chain
utilizations in order to determine closed chain metrics. Once the
closed chain metrics have been determined, those of the open chain can
be calculated. The proocedure is best illustrated by an example. Figure
7.3 depicts a mixed network with two service centers, The
specifications of the network are given in Table 7.5, The following
calculations assume an arrival rate of 0.3 and tvo customers in the

c¢losed chain,
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Figure 7.3 Example of a Mixed Network,

L1
A

'
£,
3
an
"o

’ |
¥
-

i,

Service Number of Service Server Server
Center Servers Discipline Rate Ri1 Rate B2
B
1 1 FCFS 1/2 1/2 »
2 - IS 1/3 1/10 OO
.:,:.;:.::x
:_.{_.‘:,:

Table 7.5 Description of Service Centers in Figure 7.3. }..'{,.'
[ ]
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Calculations: N
- ?JWf

_ s :

$,1 =2 °,1=1 ’

82,13 °2,1 =1 e

8,22 °7,2 =1

s e

‘2.2 = 10 02.2 =1,

t

Obviously the throughput of the open chain is equal to the arrival

5\;)ﬁ'|
J&?ES&‘ .
_“<¥{iﬁ&

rate, Hence,

E s

T1,2=Tp,2= 0.3.

'ﬁ.’&".

The utilization at service center 1 due to the open chain is: ) R

Pl'z = (°o3)(2) = 0,6 ., - k:\;&_\

The performance metrics of the closed chain can now be determined. e

. .

Calculations for v =1 : h-v’x_‘:;\\

L@@ _ RS
Ry, (1) = o= s :

A N,
ﬁg@i
&f 9

32.1(1) = 3 .:::

A

(1) (1)
11N 2@y o T 01

7’
g

' 4
)
rEL
- -

" o
3

T,,4(1) = 0.125

‘L
>
..

Ll.l(l) (00125) (5) = 00625

Ly 1(1) = (0.125) (3) = 0.375 . - .:;_f
L) f

' . a
A '.-‘.
L)
y' I' - l. g

A
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Calculations for v =2 :

by - DLLE

R2,1(2) = 3
(1) (2)
71,12 (1)(8.125) + (1)(3) 0.180
T,,4(2) = 0.180
Ly, 1(2) = (0.180) (8.125) = 1.461
Ly, 1(2) = (0.180) (3) = 0.539

Now that the metrics of the closed chain have bug: determined,
those of the open chain can be ocaloulated ss follows:

(2) (2.461)
31.2(2) --1—_0—.6-— 12.305

B3,2(2) = 83,2 = 10

(0.3) (12.305) = 3.692

Ly,2(2)

(0.3) (10) = 3 .

Ly,2(2)

The normalizing constant of a mixed network can be expressed as
the product of two smaller normalizing constants, one for the open

chains and the other for the closed chains. It follows from the
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previous chapter that the open chaim normalizing constant is:

= N

G(OPOII) = I{.IG" ’

([1 - } l(e“/p“)]-l for i FCFS, PS, or LCFS
(-]

where G, = i
i
oxp [ } ;.(e“/n“)] for i IS,
)
L (7.26)

The normalizing constant of the closed chains can be determined
from the throughput theorem as before, or both normalizing constants
can be merged into one by observing that G(v) is directly proportional -
to G(0) for all v. Thus, the two normalizing constants can be combined
into one by simply defining G(0) as G(opon)' The procedure will be

illustrated by finding the normalizing constant in the previous

example,

G (open) = 1_-71).7 o3 = 50.214

G(0) = G(open)

6(1) = -I-f-i%)— 1" % = 401.711

6(2) = %37 R L EERR T

As before, it is simple to extend the equations for multiple

chain, load independent networks, However, the limited load dependent
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case is considersbly more complicated even for sinmgle chain networks,
and will not be discussed here [REIS83]. In fact, the equations will

not oven be listed for reference purposes boecause this would require

rodefining the notation that has previously been used and would only

complicate matters. SR
N
N
\:.-.'_';
o

7.4 Close eueing Networks without Product Fo olutions :}-\:

A major advantage in the analysis of closed queueing networks over "\.f::
' open and mixed networks is that if the network can be represented by a :'E:E
'pure’ Markov process them, theoretically, a solution cam be obtained, tE;:}
! That is, since the number of customers is finite, the nuxber of network ) v
- )
E states is finite, and theiefore the process can be completely described - 'E
: by a finite set cf linear equations which equate the rate of flow into -j:_':
a netvork state to the rate of flow out of the same state, Thus, the '\"-__
! set of linear equations can be solved to obtain steady-state ,_‘
probabilities, and the other performance metrics can be obtained from ;:::'f:_..
\ these. -:;:s
; The procedure will be illustrated by an example. Comsider the two :::-::}
] A
C service conter network in Figure 7.6. It is assumed that service center ,

1 contsins an infinite number of servers and that the service center 2 -\E’S’\
contains & single server and the service discipline is nonpreemptive "
priority, It is also assumed that all service times are exponentially i.;z_
E distributed and that the number of customers in each of the three T
! chains is one. Since there is only omne customer per chain, let the E
i nusbers 1,2, and 3 represent these customers and let the network state é
: S':\::;
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Figure 7.6 Closed Network Without a Product Form Solution,

be defined by P[(x)(y)] where (x) and (y) specify the customers at

by Wy s

service centers 1 and 2, respectfully. Now since service ceater 1
contains an infinite number of servers, the order of customers at this

service center is not important, however since service center 2 has

L T s,

only s single server and its service discipline is nonpreemptive

priority, the specification order is important and must be included in

ﬁ its state specification. For example, P[(2),(3,1)] represents the
network state where service center 1 contaius the chain 2 customers and

v service center 2 contains the chain 3 and chain 1 customers. Note that

;j the chain 3 customer is currently being served at service center 2,

b Also note that P[(0),(2,3,1)] is not a legitimate network state because

g when the chain 2 customer finishes service, the chain 1 customer will

g be served before the chain 3 customer., The steady-state equations

3? describing the network are:

N
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fate out =  zate ia

- A
By PL(0)(152,3)] = 1y,PL(2)(1,3)] + uy4PL(3)(1,2)] .;-:4:
U
Y .I':.:
C‘\"t
(Bg*813)PI(3)(1,2)] = §y,PL(2,3)(1)] + paqPl(0)(3,1,2)) v':;\
- )
(ngg+ny9)PL(2)(1,3)] = py3P((2,3)(1)] + py,PL(0)(2,1,3)] :::ﬁ
oy
(mga*y3)PL(3)(2,1)] = gy PI(1,3)(2)) .
"."l‘"l
(Byatpy1)PI(1)(2,3)] = py3Pl(1,3)(2)] + uy4PI(0)(1,2,3)] . ':i
RN
(13+ny2)PL(2)(3,1)] = 1y PI(1,2)(3)] :gi'\'
QU]
(Bg3+iyy)PI(1)(3,2)] = py,PL(1,2)(3)) S
SRS
- R
(ngqtuyatig3)PI(2,3)(1)] = py,PI(1,2,3)(0)] + pu,y,Pl(3)(2,1)] ??5;
oy ey
+ 1paP1(2)(3,1)) M
)
= W) ‘
(Mgptigy+iy3)PL(1,3)(2)] = py PL(1,2,3)(0)] + py PL(3)(1,2)) ~ '-!':':.:-
o
+ ny3P(1)(3,2)) .b_', 'y
(Ry3*iy1+815)PI(1,2)(3)] = py3Pl(1,2,3)(0)] + py4P((2)(1,3)) E'\E_.
AN
+ ngaPl(1)(2,3)] .5'3
A
(Byg*igatigs)PL(1,2,3)(0)] = uy PL(2,3)(1)] + pyaPL(1,3)(2)] “'-."';"‘
Wi,
+ mygPl(1,2)(D)] . ,:':-.;:::;.‘:
"l:"n"
r
Several key issues about these eguations need to be emphasized. g
First and most significaat is that local balance does not apply, and .‘.:f"‘
‘_‘\";.:.‘.
therefore the procedure used to obtain the solstion of netvorks with ‘-‘j{j:{::?'_
N
product form does not apply (mor cam it be exteamded to do solll), » 'Nc?'
;\'_;\.':\‘
_\'-.:,-.'
250 DA
RO
"' : » g N P S ™ e R E e e e, Nt At AT A a A a s s et e A - \"-\'.\-":
o R L NN e A



RN N TN N AR NI AT N O NN AR NE L SR AR TR N N TIAYI e TS a TR RFPUIRTIrET W '.Q‘;.!".“.'

Polt
W)
O
| I
19000,
g
:.':’.'l"'t:
"‘..:'.'I:'
W
Secondly, there is no simple equation, as in the case of networks with A
b
product form solutions, to find the number of feasible networks states, '&s.
R0y
That is, there is no easy way to determine the number of equations '(h
o .!.‘.l,'
necessary to fully describe the process, Finally, the equations are Hutiih
|
less symmetrical than those of networks with product form solutionms, ::‘\.‘,
o
AN
and thus are considerably more complicated to write, Fortunately, :":Ef-:r.t
~I
VA
however, there is a way to check them. If the equations are put into S LN
matrix form, thea each column must sum to zero. The reason for this is ::'\- b
AL
that the set of equations are dependent. To obtain an independent set, ?"-" '
]
one of the equations (any one) is replaced with conservation of éﬁ

probability equation (summation over all probabilities equal one). -

s ELAA A
s

Returning to the problem being considered, once the steady-state

o
'.?'v ‘t",;'

p,
o

probabilities have been determined all other performance metrics can be

)
™~

W
N

found, Performance motrics by class can be obtained from the steady-

.»..
.

state probabilities via the following equations:

Ly, = P(1)(2,3)] + P[(1)(3,2)] + P[(1,3)(2)]

+ P[(1,2)(3)]) + P[(1,2,3)(0)}]

Ly.2 = PI(2)(1,3)] + PL(2)(3,1)] + P[(2,3)(1)]

+ P((1,2)(3)] + P((1,2,3)(0)]

Ly,3 = PL3)(1,2)] + PU(3)(2,1)] + PL(2,3) (1))

+ P[(1,3)(2)] + P[(1,2,3)(0)]

P((0)(1,2,3)] + P[(0)(2,1,3)] + P[(0)(3,1,2)] + PL(3)(1,2)]

Ly,1

+ P[(2)(1,3)] + P[(3)(2,1)] + P[(2)(3,1)] + P[(2,3)(1)]
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Ly,2 = PI(0)(1,2,3)] + P[(0)(2,1,3)] + P[(0)(3.1,2)] + P[(3)(1,2)] ’,\: s
- a
#+PI(3)(2,1)] + P[(1)(2,3)] + P[(1)(3,2)] + P[(1,3)(2)] ;::.:
L,,3 = PL(0)(1,2,3)] + P[(0)(2,1,3)] + P[(0)(3,1,2)] + P((2)(1,3)] 23
+ P[(1)(2,3)] + P[(2)(3,1)] + P[(1)(3,2)] + P[(1,2)(3)] A
Al
BNy
(o
911 = plz = pl3 = 0 (by definition) h‘a'
pa,1 = PL(0)(1,2,3)] + PL(3)(1,2)] + PL(2)(1,3)] + P[(2,3)(1)] S
2,1 \::c,b
§
py.2 = P1(0)(2,1,3)] + PU(3)(2,1)] + PL(1)(2,3)] + P((1,3)(2)] '*?\:;:.:;;;
U
P53 = PL(0)(3,1,2)] + PL(2)(3,1)] + PL(1)(3,2)] + P((1,2)(3)] iy
: A
T1,1 = T2,1 = P2,1 2,1 i} s
Ay
T1,2 = T2,2 = P2,2 Bg,2 NN
T1,3 = Ta,3 = P2,3 Ka,3 N
L
!‘._:._v;
R
Ry, = 1/ng B2 = 12,1/Ty )
Ry,2 = 1/m,, Ry,2 = 1g,2/T3,, ~ry
By,3 = 1/ny 3 Ry,3 = 12,3/Ty .3 -
RS
Performance metrics of the individual service center are obtained via :
. sy
N
the following: v j
\

Li=L,*tl,2* 3 Ay
Ly =ly,1*1y,3 * 15 Sy

."ﬁ‘.‘
'(- \ \
Ty =Ty =Ty,1 *T1,2*Tq,3 RS
r Ay

o ]

B R, Tt R T v l,3 T3 /T AR

\’:\:\‘

~N
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B =(R,, 2.1 %R, T),2+R,3T,3) /T

Py =0 -

Py ™ P2,1 ¥ P2,2 * P3,2 ¢

For example if

M11 = P12 = Kq3 = 500

P[(0)(1,2,3)]
P{(0)(2,1,3)]
P[(0)(3,1,2)]
P[(3)(1,2)]
P[(2)(1,3)]
P[(3)(2,1)]
P{(1)(2,3)]
P[(2)(3,1)]
P[(1)(3,2)]
P[(2,3)(1)]
P[(1,3)(2)]
P[(1,2)(3)]
P[(1,2,3)(0)]

and the performance metrics are:

T R R R N STl B G B N LN
IR A ;-:'-' AL __-;'{ RPN ;

H21 = K23 = Mz3 = 1,000,

then the steady-state probabilities are:

0.06203
0.05468
0.04119
0.05754
0.06653
0.03340
0.07536
0.04119
0.04119
0.09023
0.10199
0.12357

0.21053

V) €3 W, i i

Tk

[Pk

fa'

'''''''

A
YN
-+

»
<"

“»
A




Ly,q = 0.55263 Ly 1 = 0.44737
- Ly,p = 0.53204 Ly, 5 = 0.46796
— Ly, 3 = 0.49428 Ly,3 = 0.50572
L, = 1.5789S L, = 1.42108
Ty,q = 276.32 T,,; = 276.32
Ty,o = 266.02 Ty, = 266.02
Ty,3 = 247.14 Ty, 3 = 247.14
T, = 789.48 T, = 789.48
Ry 4 = 2B-3 R;,q = 1.6190E-3
R, , = 2E-3 Ry o = 1.7591E-3
Ry 3 = 2B-3 Ry, 3 = 2.0463E-3
R, =~ 2.0B-3 R, = 1.8000E-3
Py,3 =0 Py,1 = 0.27632
Pr,2 =0 Py 2 = 0.26602
P1,3= 0 Py 3 = 0.24714
pp =0 py = 0.78948 .

Some sdditional commonts are appropriate, First, the procedure
cannot be applied to all closed queuneing mnetworks., The aetwork must be
be representable by a ‘pure’ Markov proocess. That is, all of the
service time distributions must be exponential or must be sble to be
represented by exponential stages. Note that if the service time

distribution contains a discontinuity, thenm an infinite number of

254

A AT AT
X\ ‘.O‘.l ) At

X J

AN YYD

b
APRA%

“py




exponential stages is required. For example, if service time is
deterministic, then it cannot be represeated by the method of stages.
There 11-:1;0 a practical limit to the number of equations that can be
solved., Recall that the number of network states increases rapidly with
the number of customers, chains and service centers., It also increases
rapidly if the service time must be represented by the method of
stages. It is not unusual for even a small two service center network
to have well over 1,000 states. Finally, as previously stated, an open
network that limits the customer population to some fimnite number is
equivalent to a closed netwvork, Thus, in theory the procedure can be

applied to these networks, however, more often than not the number of

feasible network states prohibits it.
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CHAPTER 8 e

T CONCLUSIONS Ef, o

8.1 The Deceptive Service Center !?: ‘::4..1

Figure 8.1 depicts a simple service center, Customers arrive at - o
the service center, wait in line for one of the two servers to become %
free, receive service, and depart., One would surely think that for such
a simple system equations for the mean performance metrics could be oy
derived, However, this is an open research problem, and has only been ‘?_\'N's )
solved for two special cases [LAVE83], These cases were discussed in AN
this text and are (1) the M/M/m system, and (Z) the M/G/m system with ;C"\

LCFSPR service discipline. - : E_."-, d
L
.

. AN
———— - ——— :f".f

SERVERS

DEPARTING

ARRIVING :
CUSTOMERS R

CUSTOMERS

Fr~—==""¢y ""777

SERVICE CENTER
N
Figure 8.1 A ’‘Simple’ Service Center, o

Obviously, this 'simple’ problem has been around for quite some

time, and what makes it so deceptive is its simple representation., This -_-'*-,.;::
-,

L)
problem symbolizes the paradoxical nature of the discipline, t&::v
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8.2 Foundation

Most of fhe material covered in chapters 1 throngh 4 contains
-ntczhl_;r-nlly taught in a graduate level course(s). The material
was presented here as foundation to support the thrust of this text:
'Markovian Network Theory'. Clearly, before ome can analyze a network

of service centers, one must first learn how to analyze single service

centers.

8.3 Contributions

Chapter 5 contains the only known example of local balance being
used to solve a network of two or more service centers. In additiom, it
was illustrated by examples that if the arrival rate to a network
varied according to the number of customers in the system (up to some
finite number after which arrival ceased), then the netvork could be
mapped into an equivalent closed network (also applies to networks in
Chapter 6). This was stated by other authors, but again, these are
believed to be the only known examples in the literature. It was also
stated by others that the service rate of a service center could be a
function of both the number of customers in the service ceater and of
the number of customers in a subset of service centers, bowever, no

referonces were given. This was proved in Chapter 5,

Credit for the pioneering work in Chapter 6 belongs to the authors
Baskett, Chandy, Muntz, and Palacios, however, in order to clear up the
ambiguities in their paper it was necessary to rederive most of their

equations and to derive some that are not present, The reasons for this
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were : (1) VWhen representing nonexponential service time by the method
of oxponontinl stages there is a finite probability that a customer
will oxpii!in:; a zero length service time, They acknowledged this in
their paper, but they did not include its existence inm their
derivation. Such an existence was illustrated in the example given in
section 6.2 where this probability was 1/4. (2) Even for the less
general case that they did consider, their equatioms for fl(‘i) which
contain terms that account for the stages, are erromeous (indices and
subscript errors),

As a result of considering the more genmeral case, a general
equation for the mean service time, in terms of the mean service time
at each stage was doerived, This equation is necessary ia order to
derive the oquations for the aggregate network states, but such an
equstion was not given in the originmal psper. A third aggregate state,
which combines all classes in a chain into one 'equivalent class’, was
not included in their paper, but followed easily from the rederivation
(this state was alluded to by other authors and probably exists
somevhere in the literature, but was not found). This state
significantly reduces the amount of work that is required to determine
the normalizing comstant,

The process of rederiving the equatioms for the f (x;)'s resulted
in a much clearer understanding of types PS and IS service centers.
There is never a queus or waiting line at these types of service
centers, In addition, all customers are receiving service simul-

taneously. Thus, for type IS service conters each stage behaves as an
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independent service center, The only difference for type PS service
centers is that the service rate at each stage depends upon the total
number of—iha:o-ors. It was proved in Chapter 5 that the service rate
of a subset of service centers could depend on the number of customers
in the subset, Thus, in both cases the stages behave as service centers
with an exponential service time,

It follows from this that the proofs given in Chapter § are
sufficient for netvorks with types FCFS, IS, and PS service centers
(classes and nonexponential service times are sllowed at IS and PS
service centers, but not at FCFS service centers). The theorem given in
the paper applies to these cases and to LCFSPR service centers with
nopexponential service times and classes, In addition classes are
alloved at FCFS service centers under the constraint that they have the
same exponential service time distribution function, It is true, as the
suthors state, that if the local balance equations n;e satisfied
(apply), then the theorem holds, However, the difficulty is in proving
that the local balance applies for any network composed of these types
of service centers., It canm be shown to apply for specific networks, but
this was not done in their paper. There are several examples in this
text showing that local balance applies.

There are also several examples showing that if the network
contains service centers other tham these types them local balance is
not applicable, For example, if the service discipline is FCFS and

different mean service times are allowed for different classes, then

the local balance equations are inconsistent, Another counter example
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is when the service discipline is nonpreemptive priority, in this case
not all the‘q}obll balance equations can be subdivided into local
balance ;;;;tions. hence local balance does mot apply.

Chapter 7 contains numerons examples illustrating how to apply the
Mean Value Analysis (NVA) algorithm to closed networks. Examples for
the following types of networks were given: single chain, load
independent; single chain, load dependeant; multiple chain, load
independent; multiple chain, load dependent; and single closed chain,

load independent mixed network, It was stated in this chapter that

these were the only known examples of the MVA algorithm, however, some

have been found for cyclic networks (cyclic networks are a special case _

of single chain, load independent networks),

In addition the concept of using the throughput theorem in
conjunction with MVA to obtain the normalizing comstant is not
presented elsowhere, At present, there is no algorithm that can always
prevent overflow when trying to determine the normalizing constant
[LAVES83]. Ia the eveat of overflow these algorithms fail, This is
irrelevant when using MVA since it does not depend on the determination
of this constant in order to determine the mean performance metrics.
The advantage of using the throughpot theorem with MVA is that when
overflow is not a problem the normalizing constant can be obtained and
even if overflow does occur, the mean performance metrics can still be
obtained., The disadvantage of this technique is that it requires more
memory, however, this is often not a problenm,

Some of the contributions claimed may quite possibly appear
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somevhere in the literature (im particular, the aggregate state that
deals with c;\lpins. and the stage equation for the mean service time),
but the fact t:int they were not found and had to be rederived indicates
that the material badly needed uvnifying, This was accomplished in this
work, and because of the subject matter and volume of the material, it

is believed to be a major comtribution,

8.4 Characterization stworks with Product Form Solutions

For a network of service centers to have a product form solution
each service center in the network must meet onme of the following sets
of conditions [CHAN77] [CHANS3]:
(1) If the service discipline is FCFS, then the mean service time of
all customer classes must be the same, and the distribution must be
negative exponential (each customer class may have its own set of
routing probabilities).
(2) If the service discipline is such that every customers starts to
receive some service immoediately upon arriving, then each customer
class may have its own general service timeo distributiom (the density
function must have a rational Laplace transform) and routing
probabilities. Note, sexvice center types LCFSPR, PS and IS meet the
condition that each customers starts to receive some service
immedistely upon arrival.

In addition, if the network is open, then all arrival processes
from outside the network must be Poisson, and no quene can saturate

(utilization > 1),
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If a network meets these conditions then the steady-state

probability that the network is in state (‘1"2"”"N) is given by:

where N equals the number of service centers,

service center 1,

G

X; represonts the

Pi(‘i) is a factor

corresponding to probability that service center i is in state X and

G is a normalizing constant chosen to make the probabilities sum to

one.

The factor Pi(’i) contains only parameters that pertain to service

conter i, It is the same factor that results from assuming that the

arrival process is Poisson and analyzing the service center in

isolation, If the network is

- - = ae

e o -

uniquely determined. However,

open and the arrival process does not

depend on the number of customers, then the mean arrival rate can be

if the network is closed, then the

arrival rate (same as relative throughput) can only be determined

relative to the arrival rates at the other service centers. In this

case 8 positive value is assigned to the arrival rate at one of the

service conters, The others can then be determined (the normalizing

in general,

- - e o

not Poisson! What is even more amazing is that if one knew exactly what

the arrival process was he could not obtain an exact solution, since at

constant will compensate for this). What is amazing about this is that,

the arrival process at the individual service centers are

) present only partial results have been obtained for the G/M/1 systenm.

' It is inportant to emphasize that all of the solutions thus far

)
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have been obtained by guessing at the answer or by local balance (a
form of guessing). In other words, the solutions can be proved by
substituting the guessed at results into the global balance equations

and determining if they sre satisfied. However, at present, there is no

way to derive the results,

8.5 Approzximate Solutiom to ueing Networks

If a network does not have & product form solution them the
distribution of customers at a service center is a function not only of
the service center in question, but also of other parameters in the
network, This is an extremely difficult problem. One approach is to
make sn assumption that allows an answer to be obtained (usually the
assumption is true for networks with product form solutions and
hopefully an approximation for other networks), them to validate the
assumption by showing that the answer is close to the solution to the
problem that was (presumably) unsolvable. In other words an answer has
to be obtained by some other means than queueing theory such as
simulation, If the assumption is tested for similar networks and it
also holds (produces small errors), then one can nse it in the future
on sini{lr netwvorks without testing it. Such solutions are heunristic
and cannot be formally defended. At present all of the techniques for
obtaining approximate solutions fall into this category [SAUES1]),.
Hence, for this reason they were not covered in this text., There are
quite a few heuristic approaches that can be used on closed networks,

but few have been extended or shown to hold for open networks (some
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have been shown not to be applicable [LAVES3]). One of the reasons for EE;
this is that .clond networks are in a semse self regulating and ’,
thoroforo;_-o;o predictable. Even for closed networks without product- -',',}"‘
form solutions bounds can often be obtained, although they are somewhat
loose., It should be obvious that the development of heuristic

techniques is s trial and error procedure, In addition, one can spend

considerably more time trying to validate them than developing thenm. .
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8.6 Review o atest Textbooks
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Although there is still not s comprehensive text devoted to the

‘.d'

%

>
L

L

ares of quemeing network theory, three texts that use the theory were

published during the course of this research, - _.7

1. A Computer and Communicatjions Network Performance Amalysis, by

B.¥. Stuck and E. Arthurs, Printice-Hall, 1985, )
-~

2. Performance Analysis of Local Computer Networks, by J.L. .};{:

v

"y

Hammond and J.P, O'Reilly, Addison-Wesley, 1986, 'n.',u.

3. Telecomm ion etwork : Protocols, Modeling and Analvysis,

A
RO
M. Schwartz, Addisson~Wesley, 1987, RYIAY
AR
\-l'_.- *-
ISR
8.6.1 Textbook by Stuck and Arthurs ;-* av
The text by Stuck and Arthurs is the extreme opposite in almost f-_‘:::::f:;
e
every way of the material covered here, As they indicate in their C‘.::::::;'
'..-"\h"\-"
o W
preface, virtually no time at all is spent deriving results. Their AT
philosophy is suggested in the preface as: 'The crux of engineering, !
Y
in our opinion, is manipulating numbers inm a great variety of ways to "*:{:h}.

gain qualitative insight into design issues via quantitative methods’.
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A second motivation is given in terms of the mind-set of their Bell
Lasboratory graduate engineers: 'Many of them are simply not interested
in derivations’, Therefore, the widely used approach for deriving
fundamental results was purposely ignored in this text, whereas in

contrast, it is the derivation of fundamental relationships that

S
'.-“",:-f ’

£

constitutes the purpose and content of this dissertation, 3_‘:
waTa

S
The book primarily focuses on closed networks and obtaining bounds L

Jge—
1
i

t‘ 1]
';':'A'

for such networks., Jackson-type networks are introduced in their

"-"-
Chapter 6, The following two chapters are concerned with applications ;Eéi%
of Jackson-type mnetworks. However, the emphasis is heavily onm ﬁ":;f_
obtaining bounds for these types of networks. Several hours were spent - 1:“"*-:
roviewing these two chapters, and although some Jackson—type equations ) ;;::_'_’;E:
appear, it is doubtful that there is a single problem worked out using f:.'\':f

)
them, The material on Jackson—type networks is perhaps the. worst in the -LE'::

ERENL

"l'.
a

text., There is some material onm open networks, however it is presented

N3 T I

F AL AP
."
.'
>

s,

in such a way that it is extremely difficult to extricate it from that N,
on closed networks., In order to get around having to explain how to 'l"-:_?}g_
determine the normalizing constant, a computer program is simply given. -:::i-;
The approach use in these chapters seoms to be to cover as many cases :::’::
as possible and provide equations for these, rather than to stress the B

fundamentals and provide a few general examples,

Single service centers are discussed, but only after networks of
service centers. Again quoting from the preface, the material in these
chapters (the last two) is the most mathematically sophisticated, and

requires the greatest intellectual maturity., It should also be noted
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that the only systems discussed in them are of the type M/G/1. The
#/M/1 snd M/ M.im systoms are not discussed here or anywvhere else in the

book.

8.6.2 Texibook by fiammond and OG'Reilily

Hammond and O'Reilly devote very little effort to deriving the
basic queueing theory equations. For example, the mean performance
metrics of the M/G/1 model are developed first. The equations for the
M/M/1 are developed from these, In the chapter on queuveing theory a

total of three pages are spent on queueing networks, The emphasis is

on explaining the different types of queneing networks: open, closed -

end mizxed. The discussion on mixed netwvork is ambiguous since the
figure referenced is an open network with feedback, Also, depicted in
this section is an open network with three service centers in tandem
(the output of the first feeds directly to the input of the second,

etc.) and it is pointed out that: ‘this type of gqueueing network is of

the type most often used for modeling multisccess network nd thus
attention is restricted to this type’. Burke’s Theorem is then quoted
and it is stated that this type of network can be broken down into a
collection of M/M/1 and M/G/1 submodels, However, it should be noted
that this statement camnot be formally defended.

Burke’'s Theorem states that the output process of a M/M/m system
is Poisson and independent of all other processes in the system,
However, Burke also proved that it is the only such FCFS system with

this property [KLEI75]. The procedure is used in the chapter on ring
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networks, and it is believed that their justification is contained in ‘::"'::.:::

- L

the following _two sentences: 'The iaterarrival times and the service DY
—_— MK
..I
times sre independent, thus the chain of station elemeants in Fig 8.22 %‘f\l::':
W YU N
U it
can be broken up into independent submodels for each station, This ;:::::::‘f,
assumption, which results in a very tractable model, has been showa by '_( W
J
K¢ ]

comparison to simulation results to give reasonadbly accurate, although :.\ A
SR

SN
somewhat pessimistic results’, While the statement that the ﬁ@
interarrival times are independent is true, the arrival process is the 37.;_‘3.:}
2 w
N o \
sum of two processes, one of which is Poisson and the other non- -j{;:f-’: )
AR

Poisson, Thus, it is believed that the second sentence is actually the ;:::
justification for the first. - P
_ :-’:-":;"‘i
The following is quoted from the cover of the book ’'the -':-:'.-::;‘

S
performance models disocussed are developed in as elementary a manner as ,,‘;i-

possible, often using a heuristic rather than a rigorous approach’.
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There is nothing wrong with the approach, and it is ome of the

strengths of the book, yet, it is necessary to know when assumptions

"

such as these can be made. If it is not clearly stated as an -’,.\,.\-_.
'.h ol )

.

assumption, and the conditions under which it is applicable are not ::.::‘,..:;:
‘-:,\\:\.

pointed out, then ome is likely to misuse it. :}_:~:$
. R

AR

8.6.3 Textbook by Schwartsz RN
The book by schwartz relates more than any of the others to the Q:*\,:Qf

work contained in this dissertation, He devotes an entire chapter to
developing the fundamental queueing theory equations. However,

compared to Chapter 2,3 and 4 of this work the book is somewhat bdrief.
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For example, the strong connection between MNarkov processes and :'L':"f::
quenoing_ﬁ:o:y is not explored. The M/M/1 and N/M/2 are analyzed as :::g:
birth and death processes, however there is no mention of fact that :E:":::
this is a special case of a Narkovian process, He brings out the fact '::;:::'-':
that in the M/G/1 system the service time is not memoryless, and one :{::
)

can no longer set up a simple balance equation for states of the ?."‘--.
system. He then proceeds to look at the system at only departure 5;3.‘;.
instants without an explanation as to why this is being done (i.e,, b;
because an embedded Markov process exists at these points). He then :1';.
uses the same trick (his terminology), as in Hammond and O’'Reilly, to N «
arrive at the mean performance equations without going through the - bj‘;
detailed analysis that was given in Chapter 4 of this work, i :\‘i
There is even s section on queueing network theory im Chapter § of -f.':-"

the book., Again it is brief, dut prodbably adequate for application "r:#
purposes, For example, he does state that a queueing network is a .;:::\_-E
multidimenional birth and death process and writes out the general :il"b‘*‘
equations for an open queuneing network with exponential service times. :T‘{?:f
He does not develop the equations for closed networks, but simply .::23?
states them, He does discuss techniques for dotermiming the normalizing :::'S;
constant, but only considers single chain networks with load 'l:?::.\':
independent service rates. From an applications point of view the ::\::.:
;;.w;:{.

materisl im this section of the book is close to the material in v&"_b(
Chapters 5 (this work). Hovever, there are salient differences. For ~ ‘:s
example Burke’s Theorem, local balance, and the fact the arrival ~::
processes are not Poisson, nro.not even mentioned, In addition there ‘. ""
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are & fevw partial examples, but none wvorked from beginning to end as
those in g_n—ptu: S of this work,

It is not surprising that service disciplines such as PS and
LCFSPR are not covered in this text since it is on communications
systems. However, it is somevhat surprising that classes and type IS
service centers are not covered in the book, As demonstrated by the

example in Chapter 6 of this work, classes are sometimes necessary in

communications system in order to describe the routing of messages, In ::’,‘ o
AN
addition IS service ceanters can be used to sccount for propagation and "’:”-f*

other delays that are emcountered in networks that stretch across the

!' .- .y -

".'- n}

nation, In contrast to the text by Hammond and O'Reilly, this author ~ lj{':-\.':\
- 'l-"-:g\..‘

is quite rigorous when it comes to specifying that a technique is an &:\.:p"

R

approximation or that an assumption is made to get answer. In many E""”"'
Rty
ceses he does spocify the range over which the approximatiom or ::ﬂ"\'.( ’
R

assumption is valid, RN
e

8.6.4 F h: } () k' o7 )

Fisal fenaths T
One of the common failings in esch of the three books reviewed is 'E,‘;C"
n F ) (
L] *‘f f ]

that they all delegate very little space to the derivation of basic ,{;1}:,
queueing theory equations. The material is conceptually complex and can Lr;-- ;
"-:‘:-",'-t X
be mathematically intimidating to such an extent that anthors feel that 'ﬁ;.{-;-.'.:-}
N LT
it is necessary to gloss over it so as to have room to present their ‘Q;\':
-

applications techniques, Understandably, since the texts are

applications oriented, one would expect them to be heavily weighted in

this direction, It should be brought out that this gap needs to be




bridged with references that are in themselves understandable.

It wvas-one of the purpose of the dissertation to enhance that
undorntnmil_ity and thereby narrow that gap. It has dome 30 by going
to the source material developed by pioneers in the discipline. Where
the explanations have been brief and obscure, they have been expanded

| and clarified. Where illustrative examples where not given, they were

worked out. Where proofs could not be found, they were developed.

t

270

PR S TA A

L I T LIV DL BT S T T C2NE Ry
AN T A T AT A

A S e T L e, "w‘ﬁb’\"x“'\" 7 .\ Y
" » = P 5 % o~

A S L WNEN
"8

22 s
.

..1{ 7 "ﬁf)?.
"> B
[ s

’ -

-

II
I's



[N X NN CRFTIRERR S8 ba vab gt (L) - > . ')

o
Gy
U .
':,:Eii-.:.
S
e
ain
W _‘.‘:3
APPENDIX A WA
" _  SUPPLEMENTARY LOCAL BALANCE PROBLEMS Qieua
-— . [)
» o ™
Ry
Ly § o':‘l
A.1 F with Two Classe pOe N
Figure A,1 depicts a queuneing network composed of one service o )
NI
center with two customer classes, It is assumed the customers arrive :_r
N
A
from Poisson sources. The mean arrival rates of class 1 and class 2 L o
customers is A; and A, respectively, It is also sssumed that the f:’}'
o
service time distributions of both classes are exponentially t:,‘é‘:
A
e
distributed, However, the mean service rates may or may not be the b "
same, The network will be anslyzed for both FCFS and LCFSPR service - Ef:;‘:-:
- o,
disciplines. "',';.‘(’}\
YN
gy,
CLASS 1
M JAK
= - Ry
v A
'uﬁ'ﬂ* A
Y
CLASS 2 M ¢
2 4
—_—— > s;_\._\:
:.'i:-":-‘
ASRYE
Figure A,1 Service Center with Two Customer Classes, \_\-
ALY
- ”!.:QA;"'
t
The following analysis assumes that the service discipline is FCFS é‘s
and that the rates Hy and Hy are different. The global balance é ."ﬁ
equations for states with two or fewer customers are:
(liﬂzﬂtl)l’(l) = uyP(1,1) + uzP(z.l) + A P(0)
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(Mg #ho+1y)P(2) = p P(1,2) + uyP(2,2) + A,P(0)

(A #Ag#p)P(1,1) = gy P(1,1,1) + uyP(2,1,1) + A P(1)

(Ag#hy+0g)P(1,2) = uyP(1,1,2) + pP(2,1,2) + A,P(1)
(Ag#hgtuy)P(2,1) = yP(1,2,1) + p,P(2,2,1) + A,P(2)
(l1+12+ﬂ2)P(202) - ulp(loch) + "2’(2.2.2) + X2P(2) .

Observe that there are only seven equations and 15 unknowns, Also, note
that no matter how many equations are written there will always be more
unknowns tham equations,

Now assume that local balance holds, That is, the rate of flow out
of a state due to customer of class ¢ departing is equal to the rate of
flow into the same state due to the arrival of a class ¢ customer, The
local baslance equations that correspond (the sum of the local balance
equations are the global balance equations) to the seven global

equations are @

AP(0) = uyP(1)
A,P(0) = p,P(2)

A,P(1) = p,P(2,1)

nyP(1) = 4,P(0)

AP(2) = pyP(2,2)

nP(2) = A,P(0)
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- lzl’(I.l) - llzp(znlnl)

woht
— - i
" 's"':"
.v‘.‘n'..t
:'.f:'i':'u",
1-1?(1.2) = "1?(1.1.2) i _
e (\'
" S
#1P(1,2) = 2,P(1) e
AAY

t
!

llp(zcl) - "1’(10231)

’.‘-’:’{?
a5t
ol

A,P(2,1) = u,P(2,2,1) g
"I

"2P(201) = 11P(2) o ."'.’t
' [
A1P(2,2) = #yP(1,2,2) - S
- S AON]

-".' A Y

Dl

BP(2,2) = A,P(2) )

Par s

|‘I' l‘

The following is a subset of the local balance equations : n:.' he
’ {
1 P(1) = A,P(0) RN

[}

#oP(2) = A,P(0) oS
NS
]IIP(I.I) = llP(l) ',:‘::N-l' :
“19(1.2) = 11P(2) f. 4 y
, _

oV .::.'l:‘

K,P(2,1) = A,P(1) Nyt
2 2 N
e

KyP(2,1) = 2,P(2) SN
i

“2?(292) - 121’(2) . :-.q‘:..-"
::’-:._::r
Solving these equations in terms of P(0) results in : ,_\
RN

i v,
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P(1) = (Ay) (1/y) P(0)

- P(2) = (xz) (1/"2) P(0)
P(1,1) = (A2 (1/4))2 P(O)

P(1,2)

(Ag) (&) (1/py) (1/ny) B(0)
(Ay) (ag) (1/ug)2 P(O)

P(1,2)

P(2,1)

(Ay) (Ag) (1/my) (1/uy) P(0)

P(2,1) = (A;) (A,) (1/up)? P(0)

P(2,2)

(25)% (1/uy)? P(O) .

Observe that there are two equations for P(1,2) and P(2,1). Also
notice that they are inconsistent. The conclusion is that local balance
does not apply if the service rates are different for the two classes.

However, if K1 =Hy™H, then local balance does bhold, and the form of the

solution is :

k k kq+k
P(x1,%5,.000xy) = [Ag L 2y 2] [(1/0) 1721 P(0)
where k1 aad k, equals the number of class 1 and class 2 customers

respectively,

A.2 LCF sges
If the service discipline of the network im Figure A.1 is changed

to LCFSPR, then the global balance equations are:

(A4#35)P(0) = pyP(1) + uP(2)
(11*12+“1)P(1) - ulp(lpl) + uzP(Z.l) + lIP(O)
(Ag#Ag*+up)P(2) = uyP(1,2) + pyP(2,2) + A,P(0)

(11+x2+n1)P(101) - "Ip(lnlll) + “zp(zulpl) + XIP(I)
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(Ry+hgtng) P(2,1) = 1 P(1,2,1) + uyP(2,2,1) + A,P(1) NN
,\‘,k. N
(Ag+hg+1y)P(2,2) = g P(1,2,2) + pyP(2,2,2) + A,P(2) . ;’-:.f:?
.-"f:.r:
The corresponding local balance equations are: o
:‘:\-:'-.(
A P(0) = u P(1) e
A
AP(0) = p,P(2) R
. g
lﬁl .\4
A,P(1) = u,P(1,1) A
-‘.“~‘. ~{
AP(1) = u,P(2,1) AR
-:,\ “
nP(1) = A,P(0) N
- R
o -
XIP(Z) = ulp(l’z) - .-.)::_::'::'.
A,P(2) = p,P(2,2) R
MRS
S
RoAne
. \J.\ “x
#yP(1,1) = A,P(1) C
Vo
Kj".'j.__
A
#yP(1,2) = 2, P(2) R
AN
lxi'-':\':
NN
A P(2,1) = p,P(1,2,1) W
MP(2,1) = pyP(2,2,1) i
:.'.a'-.f »'q
MpP(2,1) = A,P(1) R
SNy
n‘.r?d'.
r-;';:“-‘
215 B
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Llp(zlz) - "lp(11202)
- lzP(Z.Z) = ﬂzP(Z.Z:Z)

n2P(202) = sz(z) .

The following is a subset of the local balance equations :
FIP(I) = LIP(O)

uyP(2) = A,P(0)

#yP(1,1) = A,P(1)
nyP(1,2) = A,P(2)
#aP(2,1) = A,P(1)
BaP(2,2) = A,P(2) .

There are six equations and seven unknowns., Solving these in terms of

P(0) results in :

P(1) = (A)) (1/py) P(0)
P(2) = (Ay) (1/py) P(0)

P(1,1) = (A2 (1/1))? P(0)

P(102) = (11) (12) (1/“1) (1/“2) P(O)
P(2,1) = (Ay) (Ay) (1/py) (1/my) P(0)
P(2,2) = (A,)% (1/u,)2 P(O) .

The form of the solution is:

k k k k
P(x;,%p,.00oxy) = [y L2y 21 [(1/pg) 1 (1/py 21 P(O)
where kl and kz equals the number of class 1 and class 2 customers

respectively,
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A.3 LCFSPR Anslveis with Two Exponentis] Stages ool
A queneing netwvork that consists of a single service center is .,,..",,
N— A
depicted in Figure A.2. There is only one customer class, but the ::E:::;:::E:
l":"‘il"?i
service time is represented by two exponential stages, and the service :::q:::::::
(X O N
discipline is last-come—first—serve-preemptive resuame. R
! T
: ‘ ﬁ;WCf'
e
™~ - = : .‘
bl

H | .
3 By ¢ X
1—JL———.-E]———- 0 M1 % “2 :’

( h
o
bo b, b, 9:
- L
i e
N
\:-: oy
Figure A.,2 Service Center with Two Exponential Stages. \::;v; v:
LY.

)

In order that the state summarize all past history of the process, :E.‘_?-
N > o
it must contain the stage that each customer was in when preempted and ::r".;\‘: 'ii
W)
()

his order at the service center., If the service center contains k .: ~
customers, then let (my,my,...,my) be the state, where m; is the stage RNy
-""«'\n':
of the last customer to arrive, .:g,:’,ﬁ-.
-,‘-',‘-"'1
By Equating the rate of flow into and out of a state the following ;.f'.'f'.'pfv

"\. -
global balance equations, for states in which there are two or fewer T‘-
N
: ek
customers, are obtained : ,:::,:::h__,

. M
80AP(0) = pyb,P(1) + p,P(2) N

(ny+agA)P(1) = &gAP(0) + uybgP(1,1) + pyP(2,1)
(llz*lol)P(Z) = lllilp(l) + p1b1P(1,2) + |12P(2.2)

(u1+.ol)y(101) = lolP(l) + ﬂ1b1p(1p131) + uzP(Z.I.l)

217
PPl VO X PP BB TP LB AIEP R R R R T Pt S ATATR SO
ST, , ‘.. W.:'@'- v -.:\"1.'\* VA SRR RNk f,x"".‘;'-" A S AN NN A
I N N A A S o A A S 5 S R T 5 Lt C O (4 o K Ty, S o L T a e oY ¥ ¥



(g *8gMP(1,2) = sgAP(2) + pybyP(1,1,2) + wpP(2,1,2) SRR

(8g+8gA)P(2,1)-= pya,P(1,1) + pyb P(1,2,1) + uyP(2,2,1) AR
- Ut
"l"e!“
(“2‘.’.0")"2’2) = ”1'1"1'2) + uiblp‘lpztz) + llzp(zozoz) . :::::::::
“Q i_.(i
.‘:‘f‘lﬂt'
In the first three equations there are seven unknowans., In the N
b* p
first seven equations there are fifteen unknowns. Again, no mater how ::: )
L%, ) .
many equations are written there will always be more unknowns than :-j \
>
equations, .‘,-.t
L :}.“l
The corresponding looal balance equations are obtained by equating :h.{:’
)
the rate of flow out of a state due a customer leaving a stage of .EE":'.
s I.‘
service to the rate of flow into that state due to customer entering _
- o)
that stage: - \ ":'"::
]
8AP(0) = ;b P(1) + pyP(2) O
h 1-
BP(1) = 8gAP(0) ooy
.f‘,\ V
8gAP(1) = u1b19(1.1) + uyP(2,1) ]
aP(2) = pya,P(1) K
Y
.ou(z) = uybyP(1,2) + #yP(2,2) MO
\'r\" ¥
"n:"o
»P(1,1) = sgAP(1)
; 8gAP(1,1) = b P(1,1,1) + u,yP(2,1,1) I
UL
-."'.‘-.%"2‘.
mn
"IP(I'Z) bad loll’(z) ‘:.:.' ":‘
.ou(inz) - “lblp(lllll) + llzp(20102) -
Dt \,
N
P ’ = » LS .J Y
1AP(2,1) = pybyP(1,2,1) + py P(2,2.1) R
ey
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.:':i' e' ’
"l‘l'-i“'
A AP A ¥
"'d".':‘.
R
v:::|:':$:i'.
0'"(';:(',:'
: e
- nzr(z.z) = ulalP(l.Z) ::’::i::;‘
D “! et
R
| The sum of the l1locsl bdalance equations are the global balance '!.‘.u,‘,!-'
equations, Therefore the solution of the local balance equations will ‘ ‘:':gis
AN
satisfy the global balance equations, The following is a subset of the :Q'.::":E:
o
local balance equationms : RO
o
RgP(1) = 87AP(0) o o
RNy
lllp(an) = .ou(z) - ; :‘..
R
BaP(2,1) = pya,P(1,1) ‘3:
Ilzp(zaz) - nlllP(I.Z) . N
BNt AT
n‘_:o":.‘\
Notice that there are six equations and seven unknowns. Solving these ::»},.j:
F* t
equations in terms of P(0) results in : o "
":;s;
s ey
p1) = -2 peoy NI
1 NN,
R, .
fa84A ’
0
P(2) = — 1 »0) D
2 ;::
(aol)z -
P(1,1) = 3 P(0) 0
(lll) N
.ozﬂlxz ;J (]
P(1,2) = P(0) N
Ryiy ?.,.n.
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- P(2,1) = P(0)
BeB2
(an8,.))
P(2.2) = —21 p(o) .
"‘2)2

The form of the solution for these six states is

£3(mg) fy(my). .. 1y (my)

P(my,mp,.c0,my) = o
agh/p for a,=1
where £y(my) = oMty 4
8g84r/py for m;=2 -

and G = 1/P(0) .

-

It is easy to verify that this is the solution for any state, It
satisfies both the local and global balance equations, The solution

slso agrees with the equations in Chapter 6.
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APPENDIX B e

- SOURCE LISTING OF MVA PROGRAM ':;fg‘.?.;‘.?;?

—_— 0"':‘:‘!

i

MULTIPLE CHAIN, LOAD INDEPENDENT NETWORKS L

ORI

$b§

X

Qo

Program MVA (input,output); :,"..t:'
Const "”
Max M = 3; {Maximum number of Service Centers} At
Max C = 103 {Maximum number of Chains or Classes} A !".:
MaxSize = 1000; g
WA

Type e
Population Vector = Array(l..Max C] of Integer; .;.,.,, .
Matrix = Array[l..Max M,1..Max C] of Real; - ..,;"‘, !

ServerType = 0..1; {0 = IS , 1 = all others} - ;.&’":, ‘
Var i‘?\':
N,N Max : Population Vector; Latubty
L,T,R,V,S : Matrix; P—
Length ¢ Array(l..Msx_M,0..MaxSize] of Real; "a"«
Queue : Array[l..Max_M] of ServerType; Wiy
M : integer; {Number of Service Centers} X m
c : integer; {Number of Chains or Classes} t".::::‘,:';"
I,K : Integer; y e
X : Real; s

.‘.F\-

{ G
This function increments the present population vector, N, and :r,‘g“‘

is set to false, if N does not equal the maximum population gg\': ~

% 2

vector, N Max, In addition to the above parameters the length

of both population vector, C, is passed to the functiom. } e

sy

Function Increment_Population Vector :f?-.;f'

(Var N : Population_Vector; R

N_Max : Population Vector; AN

C : Integer): Boolean; MW

Var N

Flag : Boolesn; f.::‘-;
J : Integer; ,,Q
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Begin .
J :=1; {alvays start from the far left and proceed to the right}
Repeat -
N[J] =N{J] + 13
If N[J] <= N Max[J] then Flag := True
Else {reset present column and increment next column}
Begin
Flag := F
N[J] := 0;
Ji=J+1
End;
Until ((J > C) Or Flag):
Increment_Population Vector := (J > C)
End;

{

Given a population vector, N, this function computes the row
index value (0..MaxSize) of the matrix Length, The formula is :
Index := nl + [N Max(1)+1] n2 + [N Max(1)+1] [N_Max(2)+1] n3 +
eee + [N Max(1)+1] [N _Max(2)+1]... [N_Max(C-2)+1] n(C-1)
where nl,n2,...,nC are the elements of the population vector N,
and N_Max(1),N Max(2),...,N Max(C) are the elements of the maximum
population vector,N _Max. Note the maximum index value is :
(N_max(1)+1] [N_Max(2)+1]... [N Max(C-1)], and is not
(N_max(1)+1] [N_Max(2)+1]... (N Max(C~1)] [N_Max(C)].
Hence a considerable memory saving is accomplished by writing over
Length values that are no longer required by the MVA algorithm.
To take maximum advange of this saving the chain with the largest
population should be nC. }

1se;

Function Index (N,N Max : Population Vector; C:Integer): Integer;
Var
J,Sum,Radix : Integer:;
Begin
If C=1 then Index := 0
Elge
Begin
Sum := N[1];
Redix := N Max(1] + 1;
Por J := 2 To (C-1) do
Begin
Sum := Sum + ( N[J] * Radix );
Radix := Radix # ( N Max[J] + 1)
BEnd; (% for w)
Index := Sum
End (% else *)
End; (* Index %)
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!,"“ byt
DI [ K
SRR
e
PR
i :

{ - ) Y ina
Begin (* main program *) A
Writeln; :5:\ '
(* read parameters specific to this model ) e~ ;
write('Number of Service Centers => '); Readln(M); .xﬁss;
For I := 1 to M do e S
begin gl
write('Service Center ',1:2,' is type => '); e \ﬁq
readln(Queue(1)); i

end;

vrite('Number of Chains or Classes => '); Readln(C):
For K :=1 to C do

LR
XS
LT

begin ‘ﬁ:"
vrite('Number of jobs in chain ',K:2,' => '); ‘_\.‘:l
readln(N Max[K]); N v\$

iy R

writeln; Ry

For I:=1 to M do Ay
For K:= 1 to C do TN,
begin - RN

write('Relative number of visits [Center ',I:2, - RN

', Chain ',K:2,'] => '); g

readln(V[I,K]) e '::"

end; ML
writeln; )

For I:=1 to M do
For K:=1 to C do
begin
write("'Mean Service Time [Center ',I:2,' , Chain ',K:2, '] => ');
readln(s[I,K])
end;

{initial parameters}

For I := 1 to M do Length[I, 0] := 0.0;

(* initialize N = [1,.C] := 0 #)

For K := 1 to C do N[K] := 0;

N{1] := 1; (initalize population vector N := [1,0,0,...,0]}

(* Perform calulations #)
Repeat
For K := 1 to C do
Begin
If N(K] = O then (* there are O jobs in chain k *)
For I 1= 1 to M do L[I,K] :=0
Else
Begin (% caluste R #)
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S 0y
::::.::::
.."i!l"’
LN
.t:::::;:t
For I := 1 to M do R
1f Queue [I] =0 (* if |ﬂ|;|‘p:(
_ then RILE] s= SILK) infinite server *) s
se .
Begin N ';:"‘
N NIK] - 13 i
K] 1= s[I K] . . .l‘:.i‘t
N[K] := NIK] + 1 ( 1 + Length[I,Index(N,N Max,C)] ); A
2nd; e
(* calulate throu R
ghput T %) Ty
(* calualate L by Class #) E::t
X := 0; :“' 'h:?/'
For I := 1 to M do X:= " ‘
For I := 1 to M do X + VILE] * RILRI]; ".:f:!u:
Begin RS,
Eg.:] := N(K] * V[LK] / X3 E“'
g ] = T(I,K] * R([I,K] ‘{33'.4"\1'
- ‘
Bnd (* else *) t?:'
%ﬂd: (% for *) EQ}
# calulate total L of each -
For I := 1 to M do queue +) - N
Begin - ':‘::'\M
X := 03 :;i-::.-
For K :=1 to Cdo X := RN
. x + * " A
Lol ke O LILE: RS
3 - . o
Until Increment_Population_Vector(N,N _Max,C); 3':%"‘
- ’ "
(* print performan 3%
e ce parameters *) ;‘3\;‘{ !
Writeln; L‘C:’:f’
Writeln ('Center Chain Th -
For i:=1 to M do roughtput Response Time  Q-Length '); W
For K:=1 to C do \::"‘
begin Xt '*:
orite(’ '.1:2); ."-::-‘.::\
Write(" ',K:2); LAY
wgt'(: ', T[I,K]:10); ,
3&2:{:;(- "+RILK]:10); e
.nd » L{Ik]:10) N
End. ::'::'* ‘
o T Y9
Nh. \
'J'\ ]
A
I,
o¢\ Y
-* By
KON
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